【題目】在平面直角坐標(biāo)系中,已知矩形的長為,寬為, 、邊分別在軸、軸的正半軸上, 點(diǎn)與坐標(biāo)原點(diǎn)重合.將矩形折疊,是點(diǎn)落在線段上.
(Ⅰ)當(dāng)點(diǎn)落在中點(diǎn)時,求折痕所在的直線方程.
(Ⅱ)若折痕所在直線的斜率為,求折痕所在的直線方程與軸的交點(diǎn)坐標(biāo).(答案中可以出現(xiàn))
【答案】(Ⅰ) ;(Ⅱ) .
【解析】試題分析:
(Ⅰ)利用點(diǎn)的坐標(biāo)兩點(diǎn)式可得直線方程為;
(Ⅱ)分類討論和兩種情況可得折痕所在的直線方程與軸的交點(diǎn)坐標(biāo)為.
試題解析:
(Ⅰ)點(diǎn)落在中點(diǎn)時,折痕過與中點(diǎn),
∴折痕方程: .
(Ⅱ)①當(dāng)時,此時點(diǎn)與點(diǎn)重合,折痕所在的直線方程.
②當(dāng)時,將矩形折疊后點(diǎn)落在線段上的點(diǎn)記為,
所以與關(guān)于折痕所在的直線對稱,
有,
解得,故點(diǎn)坐標(biāo)為,
從而折痕所在的直線與的交點(diǎn)坐標(biāo)(線段的中點(diǎn))為,
折痕所在的直線方程,
即: .
由①②得折痕所在的直線方程為:
所以令,得折痕與軸交點(diǎn)坐標(biāo)為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】紋樣是中國藝術(shù)寶庫的瑰寶,火紋是常見的一“種傳統(tǒng)紋樣.為了測算某火紋紋樣(如圖陰影部分所示)的面積,作一個邊長為的正方形將其包含在內(nèi),并向該正方形內(nèi)隨機(jī)投擲個點(diǎn),已知恰有個點(diǎn)落在陰影部分,據(jù)此可估計陰影部分的面積是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是函數(shù)y=f(x)的導(dǎo)函數(shù)y=f′(x)的圖象,則下面判斷正確的是( )
A. 在(-2,1)上f(x)是增函數(shù) B. 在(1,3)上f(x)是減函數(shù)
C. 當(dāng)x=2時,f(x)取極大值 D. 當(dāng)x=4時,f(x)取極大值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個盒子中裝有1個紅球和2個白球,這3個球除顏色外完全相同,有放回地連續(xù)抽取2次,每次從中任意抽取出1個球,則:
(1)第一次取出白球,第二次取出紅球的概率;
(2)取出的2個球是1紅1白的概率;
(3)取出的2個球中至少有1個白球的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知橢圓 =l (a>b>0)的焦距為2,離心率為 ,橢圓的右頂點(diǎn)為A.
(1)求該橢圓的方程:
(2)過點(diǎn)D( ,﹣ )作直線PQ交橢圓于兩個不同點(diǎn)P,Q,求證:直線AP,AQ的
斜率之和為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場舉行有獎促銷活動,顧客購買一定金額的商品后即可抽獎.抽獎方法是:從裝有個紅球,和個白球的甲箱與裝有個紅球,和個白球,的乙箱中,各隨機(jī)摸出個球,若模出的個球都是紅球則中獎,否則不中獎.
(1)用球的標(biāo)號列出所有可能的模出結(jié)果;
(2)有人認(rèn)為:兩個箱子中的紅球比白球多所以中獎的概率大于不中獎的概率,你認(rèn)為正確嗎?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是一幾何體的平面展開圖,其中ABCD為正方形,E,F分別為PA,PD的中點(diǎn),
在此幾何體中,給出下面四個結(jié)論:
①直線BE與直線CF異面; ②直線BE與直線AF異面;
③直線EF∥平面PBC; ④平面BCE⊥平面PAD.
其中正確的有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com