【題目】在△ABC中,AC=6,cos B= ,C= .
(1)求AB的長;
(2)求cos 的值.
【答案】(1);(2)
【解析】試題分析:(1)由同角函數(shù)基本關系式得sin B=,求出sin B=;再由正弦定理求出. (2)由三角形三個內角和的關系得出A=π-(B+C);再利用誘導公式求出cos A=-cos Bcos +sin Bsin=-;接著求出sin A==;最后利用誘導公式求出cos=cos Acos +sin A·sin=.
試題解析:
(1)因為cos B= ,0<B<π,
所以sin B=== ,
由正弦定理知, ,
所以 .
(2)在三角形ABC中A+B+C=π,
所以A=π-(B+C).
于是cos A=-cos(B+C)
=-cos
=-cos Bcos +sin Bsin,
又cos B= ,sin B= ,
故cos A=- × + × =- ,
因為0<A<π,所以sin A== .
因此cos =cos Acos +sin A·sin =- × + × =.
【點晴】
解三角形的常用的與三內角及三邊有關的知識有:同角函數(shù)基本關系式、三個內角關系、正弦定理、余弦定理及其推論、三角形的面積公式等,這些公式一定要熟記才能做到靈活應用.
科目:高中數(shù)學 來源: 題型:
【題目】若, ,則實數(shù)的取值范圍為__________.
【答案】
【解析】當m=0時,符合題意。
當m≠0時, ,則0<m<4,
則0m<4
答案為: .
點睛:解本題的關鍵是處理二次函數(shù)在區(qū)間上大于0的恒成立問題,對于二次函數(shù)的研究一般從以幾個方面研究:
一是,開口;
二是,對稱軸,主要討論對稱軸與區(qū)間的位置關系;
三是,判別式,決定于x軸的交點個數(shù);
四是,區(qū)間端點值.
【題型】填空題
【結束】
15
【題目】已知橢圓: 的右焦點為, 為直線上一點,線段交于點,若,則__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)f(x)的最小值為1,且f(0)=f(2)=3.
(1)求f(x)的解析式;
(2)若f(x)在區(qū)間[2a,a+1]上不單調,求實數(shù)a的取值范圍;
(3)在區(qū)間[-1,1]上,y=f(x)的圖象恒在y=2x+2m+1的圖象上方,試確定實數(shù)m的范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),.
(1)若函數(shù)恰有兩個不相同的零點,求實數(shù)的值;
(2)記為函數(shù)的所有零點之和,當時,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如果△A1B1C1的三個內角的余弦值分別等于△A2B2C2的三個內角的正弦值,則( )
A.△A1B1C1和△A2B2C2都是銳角三角形
B.△A1B1C1和△A2B2C2都是鈍角三角形
C.△A1B1C1是鈍角三角形,△A2B2C2是銳角三角形
D.△A1B1C1是銳角三角形,△A2B2C2是鈍角三角形
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知矩形的長為,寬為, 、邊分別在軸、軸的正半軸上, 點與坐標原點重合.將矩形折疊,是點落在線段上.
(Ⅰ)當點落在中點時,求折痕所在的直線方程.
(Ⅱ)若折痕所在直線的斜率為,求折痕所在的直線方程與軸的交點坐標.(答案中可以出現(xiàn))
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在每年的3月份,濮陽市政府都會發(fā)動市民參與到植樹綠化活動中去林業(yè)管理部門為了保證樹苗的質量都會在植樹前對樹苗進行檢測,現(xiàn)從甲、乙兩種樹苗中各抽測了株樹苗,量出它們的高度如下(單位:厘米),
甲:37,21,31,20,29,19,32,23,25,33;
乙:10,30,47,27,46,14,26,10,44,46.
(1)畫出兩組數(shù)據(jù)的莖葉圖并根據(jù)莖葉圖對甲、乙兩種樹苗的高度作比較,寫出兩個統(tǒng)計結論;
(2)設抽測的株甲種樹苗高度平均值為,將這株樹苗的高度依次輸人,按程序框(如圖)進行運算,問輸出的大小為多少?并說明的統(tǒng)計學意義,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠為了對新研發(fā)的一種產(chǎn)品進行合理定價,隨機抽取了個試銷售數(shù)據(jù),得到第個銷售單價(單位:元)與銷售(單位:件)的數(shù)據(jù)資料,算得
(1)求回歸直線方程;
(2)預計在今后的銷售中,銷量與單價仍然服從(1)中的關系,且該產(chǎn)品的成本是元/件,為使工廠獲得最大利潤,該產(chǎn)品的單價應定為多少元?(利潤-銷售收入-成本)
附:回歸直線方程中,,其中是樣本平均值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知過拋物線的焦點,斜率為的直線交拋物線于兩點,且.
(1)求該拋物線的方程;
(2)已知拋物線上一點,過點作拋物線的兩條弦和,且,判斷直線是否過定點?并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com