【題目】在圓上任取一點,過點軸的垂線段,垂足為,在直線,,當點在圓上運動時.

(1)求點的軌跡的方程,并指出軌跡.

(2)直線l不過原點O且不平行于坐標軸,lC有兩個交點A,B,線段AB的中點為M.證明:直線OM的斜率與直線l的斜率的乘積為定值.

【答案】(1),橢圓,(2)見解析.

【解析】

(1)設(shè)點的坐標為,,可得,代入化簡即可得結(jié)果;(2)設(shè)直線,代入可得,利用韋達定理以及中點坐標公式可得 ,從而可得結(jié)論.

(1)設(shè)點的坐標為,

因為在圓上,所以

設(shè),因為,且軸垂直

所以,代入

可得化為,

的方程為,軌跡表示焦點在軸上的橢圓.

(2)設(shè)直線lykxb(k≠0,b≠0),A(x1,y1),B(x2,y2),M(xMyM).

ykxb代入=1,得(2k2+1)x2+4kbx+2b2-8=0.

xMyMk·xMb.

所以直線OM的斜率kOM=-,

所以kOM·k=-.

故直線OM的斜率與直線l的斜率的乘積為定值.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知點,,直線與直線相交于點,直線與直線的斜率分別記為,且

(1)求點的軌跡的方程;

(2)過定點作直線與曲線交于兩點, 的面積是否存在最大值?若存在,求出面積的最大值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)m, n是兩條不同的直線,是三個不同的平面, 給出下列四個命題:

m⊥α,n∥α,m⊥n;; α∥β, β∥r, m⊥α,m⊥r;

m∥α,n∥α,m∥n;; α⊥r, β⊥r,α∥β

其中正確命題的序號是 ( )

A. B. ②③ C. ③④ D. ①

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)是雙曲線 的兩個焦點,PC上一點,若,且的最小內(nèi)角為,則C的離心率為(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,焦距為.斜率為k的直線l與橢圓M有兩個不同的交點A,B.

)求橢圓M的方程;

)若,求 的最大值;

)設(shè),直線PA與橢圓M的另一個交點為C,直線PB與橢圓M的另一個交點為D.C,D和點 共線,求k.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點為圓的圓心, 是圓上的動點,點在圓的半徑上,且有點上的點,滿足.

1)當點在圓上運動時,求點的軌跡方程;

2)若斜率為的直線與圓相切,直線與(1)中所求點的軌跡交于不同的兩點, 是坐標原點,且時,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法正確的是(
A.命題“x∈R,ex>0”的否定是“x∈R,ex>0”
B.命題“已知x,y∈R,若x+y≠3,則x≠2或y≠1”是真命題
C.“x2+2x≥ax在x∈[1,2]上恒成立”“(x2+2x)min≥(ax)max在x∈[1,2]上恒成立”
D.命題“若a=﹣1,則函數(shù)f(x)=ax2+2x﹣1只有一個零點”的逆命題為真命題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的焦點到準線的距離為,直線與拋物線交于兩點,過這兩點分別作拋物線的切線,且這兩條切線相交于點.

(1)若的坐標為,求的值;

(2)設(shè)線段的中點為,點的坐標為,過的直線與線段為直徑的圓相切,切點為,且直線與拋物線交于兩點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列函數(shù)中,在其定義域上既是偶函數(shù)又在(0,+∞)上單調(diào)遞減的是(
A.y=x2
B.y=x+1
C.y=﹣lg|x|
D.y=﹣2x

查看答案和解析>>

同步練習冊答案