下列四個正方體圖形中,A,B為正方體的兩個頂點,M,N,P分別為其所在棱的中點,則能得出AB∥平面MNP的圖形個數(shù)是( 。
A、1個B、2個C、3個D、4個
考點:直線與平面平行的判定
專題:空間位置關(guān)系與距離
分析:分別利用線面平行的判定定理,在平面MNP中能否尋找一條直線和AB平行即可.
解答: 解:在①中NP平行所在正方體的那個側(cè)面的對角線,從而平行AB,所以AB∥平面MNP;
在③中設(shè)過點B且垂直于上底面的棱與上底面交點為C,
則由NP∥CB,MN∥AC可知平面MNP∥平行平面ABC,
即AB∥平面MNP.
故選B
點評:本題主要考查線面平行的判定,利用線面平行的判定,只要直線AB平行于平面MNP內(nèi)的一條直線即可.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x2+c,g(x)=aex的圖象的一個公共點為(2,t),且曲線y=f(x),y=g(x)在P點處有相同切線,函數(shù)f(x)-g(x)的負(fù)零點在區(qū)間(k,2k+1),k∈Z,則k=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y為正實數(shù),a=
x2+xy+y2
,b=p
xy
,c=x+y.
(1)試比較a、c的大。
(2)若p=1,試證明:以a,b,c為三邊長一定能構(gòu)成三角形;
(3)若對任意的正實數(shù)x,y,不等式a+b>c恒成立,試求p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了測試某批燈光的使用壽命,從中抽取了20個燈泡進行試驗,記錄如下:(以小時為單位)
171  159、168、166、170、158、169、166、165、162
168  163、172、161、162、167、164、165、164、167
(1)列出樣本頻率分布表;
(2)畫出頻率分布直方圖;
(3)從頻率分布的直方圖中,估計這些燈泡的使用壽命.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,三棱錐M,PA⊥底面ABC,∠ABC=90°,則此三棱錐P-ABC中直角三角形有
 
個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線C:y2-
x2
3
=1,過點P(2,1)作直線l交雙曲線C于A、B兩點.若P恰為弦AB的中點,則直線l的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)是定義在R上的奇函數(shù),對?x∈R都有f(x-1)=f(x+1)成立,當(dāng)x∈(0,1]且x1≠x2時,有
f(x2)-f(x1)
x2-x1
<0.給出下列命題
(1)f(1)=0
(2)f(x)在[-2,2]上有5個零點
(3)點(2014,0)是函數(shù)y=f(x)的一個對稱中心
(4)直線x=2014是函數(shù)y=f(x)圖象的一條對稱軸.
則正確的是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)為R上的奇函數(shù),當(dāng)x∈[0,+∞)時,f(x)=x(1+x3),則f(-2)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)f(x),有如下四個命題:
①若f(0)=0,則函數(shù)f(x)是奇函數(shù);
②若f(-4)≠f(4)則函數(shù)f(x)不是偶函數(shù);
③若f(0)<f(4),則函數(shù)f(x)是R上的增函數(shù);
④若f(0)<f(4),則函數(shù)f(x)不是R上的減函數(shù).
其中正確的命題有
 
(寫出你認(rèn)為正確的所有命題的序號).

查看答案和解析>>

同步練習(xí)冊答案