【題目】已知橢圓的焦距為,離心率為,圓,是橢圓的左右頂點(diǎn),是圓的任意一條直徑,面積的最大值為2.
(1)求橢圓及圓的方程;
(2)若為圓的任意一條切線(xiàn),與橢圓交于兩點(diǎn),求的取直范圍.
【答案】(1) 橢圓方程為,圓的方程為 (2)
【解析】分析:(1)易知當(dāng)線(xiàn)段AB在y軸時(shí),,,結(jié)合
可求,可求橢圓方程和圓的方程;
(2)設(shè)直線(xiàn)L方程為:y=kx+m,直線(xiàn)為圓的切線(xiàn),,
直線(xiàn)與橢圓聯(lián)立,,得,利用弦長(zhǎng)公式
可得,然后利用換元法求其范圍即可.
詳解:
解:(1) 設(shè)B點(diǎn)到x軸距離為h,則,易知當(dāng)線(xiàn)段AB在y軸時(shí),
,
所以橢圓方程為,圓的方程為
(2)設(shè)直線(xiàn)L方程為:y=kx+m,直線(xiàn)為圓的切線(xiàn),,
直線(xiàn)與橢圓聯(lián)立,,得
判別式,由韋達(dá)定理得:,
所以弦長(zhǎng),令,
所以
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】直線(xiàn)與曲線(xiàn)有兩個(gè)不同的交點(diǎn),則實(shí)數(shù)的取值范圍是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在三棱錐中, 和是邊長(zhǎng)為的等邊三角形, , 分別是的中點(diǎn).
(1)求證: 平面;
(2)求證: 平面;
(3)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某網(wǎng)店經(jīng)營(yíng)的一種商品進(jìn)行進(jìn)價(jià)是每件10元,根據(jù)一周的銷(xiāo)售數(shù)據(jù)得出周銷(xiāo)售量(件)與單價(jià)(元)之間的關(guān)系如下圖所示,該網(wǎng)店與這種商品有關(guān)的周開(kāi)支均為25元.
(1)根據(jù)周銷(xiāo)售量圖寫(xiě)出(件)與單價(jià)(元)之間的函數(shù)關(guān)系式;
(2)寫(xiě)出利潤(rùn)(元)與單價(jià)(元)之間的函數(shù)關(guān)系式;當(dāng)該商品的銷(xiāo)售價(jià)格為多少元時(shí),周利潤(rùn)最大?并求出最大周利潤(rùn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)一批產(chǎn)品的內(nèi)徑進(jìn)行抽查,已知被抽查的產(chǎn)品的數(shù)量為200,所得內(nèi)徑大小統(tǒng)計(jì)如表所示:
(Ⅰ)以頻率估計(jì)概率,若從所有的這批產(chǎn)品中隨機(jī)抽取3個(gè),記內(nèi)徑在的產(chǎn)品個(gè)數(shù)為X,X的分布列及數(shù)學(xué)期望;
(Ⅱ)已知被抽查的產(chǎn)品是由甲、乙兩類(lèi)機(jī)器生產(chǎn),根據(jù)如下表所示的相關(guān)統(tǒng)計(jì)數(shù)據(jù),是否有的把握認(rèn)為生產(chǎn)產(chǎn)品的機(jī)器種類(lèi)與產(chǎn)品的內(nèi)徑大小具有相關(guān)性.
參考公式:,(其中為樣本容量).
0.050 | 0.010 | 0.001 | |
k | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)為定義在上的奇函數(shù),且當(dāng)時(shí),
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)求函數(shù)在區(qū)間 上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為a的菱形ABCD中,,E,F分別是PA和AB的中點(diǎn).
(1)求證: EF||平面PBC;
(2)求E到平面PBC的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)定義域?yàn)?/span>R的函數(shù).
(1)在平面直角坐標(biāo)系中作出函數(shù)f(x)的圖象,并指出f(x)的單調(diào)區(qū)間(不需證明);
(2)若方程f(x)+5a=0有兩個(gè)解,求出a的取值范圍(不需嚴(yán)格證明,簡(jiǎn)單說(shuō)明即可);
(3)設(shè)定義域?yàn)?/span>R的函數(shù)g(x)為偶函數(shù),且當(dāng)x≥0時(shí),g(x)=f(x),求g(x)的解析式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com