16.已知等差數(shù)列{an}滿足:a3=7,a5+a7=26,數(shù)列{an}的前n項(xiàng)和為Sn
(1)求an及Sn
(2)令bn=3an(n∈N*),求數(shù)列{bn}的前n項(xiàng)和Tn

分析 (1)利用等差數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式即可得出.
(2)利用等比數(shù)列的求和公式即可得出.

解答 解:(1)設(shè)等差數(shù)列{an}的公差為d,∵a3=7,a5+a7=26,
∴$\left\{\begin{array}{l}{{a}_{1}+2d=7}\\{2{a}_{1}+10d=26}\end{array}\right.$,解得$\left\{\begin{array}{l}{{a}_{1}=3}\\{d=2}\end{array}\right.$.
∴an=3+2(n-1)=2n+1.
Sn=$\frac{n(3+2n+1)}{2}$=n2+2n.
(2)由(1)可得:bn=3an=32n+1=3×9n
∴數(shù)列{bn}的前n項(xiàng)和Tn=3×$\frac{9×({9}^{n}-1)}{9-1}$=$\frac{27}{8}({9}^{n}-1)$.

點(diǎn)評(píng) 本題考查了等差數(shù)列與等比數(shù)列的通項(xiàng)公式及其求和公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知?jiǎng)訄AQ過定點(diǎn)F(0,-1),且與直線l:y=1相切,橢圓N的對(duì)稱軸為坐標(biāo)軸,O點(diǎn)為坐標(biāo)原點(diǎn),F(xiàn)是其一個(gè)焦點(diǎn),又點(diǎn)A(0,2)在橢圓N上.
(Ⅰ)求動(dòng)圓圓心Q的軌跡M的標(biāo)準(zhǔn)方程和橢圓N的標(biāo)準(zhǔn)方程;
(Ⅱ)若過F的動(dòng)直線m交橢圓N于B,C點(diǎn),交軌跡M于D,E兩點(diǎn),設(shè)S1為△ABC的面積,S2為△ODE的面積,令Z=S1S2,試求Z的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.給出四個(gè)命題:
(1)當(dāng)n=0時(shí),y=xn的圖象是一條直線;
(2)冪函數(shù)圖象都經(jīng)過(0,1)、(1,1)兩點(diǎn);
(3)冪函數(shù)圖象不可能出現(xiàn)在第四象限;
(4)冪函數(shù)y=xn在第一象限為減函數(shù),則n<0.
其中正確的命題個(gè)數(shù)是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知函數(shù)y=|x+3|,向量程序框表示的是給出x值,求所對(duì)應(yīng)的函數(shù)值的算法,請(qǐng)將該程序框圖補(bǔ)充完整,其中①處應(yīng)填x≥-3;②處應(yīng)填y=-x-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在△ABC中,a,b,c分別為角A,B,C所對(duì)應(yīng)的邊,若a,b,c成等比,則角B的取值范圍是(0,$\frac{π}{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.4名男歌手和2名女歌手聯(lián)合舉行一場(chǎng)音樂會(huì),出場(chǎng)順序要求兩名女歌手不相鄰,共有出場(chǎng)方案的種數(shù)是( 。
A.$A_4^4A_5^2$B.$A_4^4A_3^2$C.$A_4^4A_2^2$D.$A_4^4A_4^1A_3^1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.為了了解某地區(qū)20000個(gè)家庭日常用水情況,采用抽樣調(diào)查的方式,通過分析樣本數(shù)據(jù)來估計(jì)整個(gè)地區(qū)居民用水量的分布情況.假設(shè)通過抽樣,獲得了100個(gè)家庭(單位:戶)某年的月平均用水量(單位:噸),整理數(shù)據(jù)后制成如下頻數(shù)分布表:
分組[0,0.5)[0.5,1)[1,1.5)[1.5,2)[2,1.5)[2.5,3)[3,3.5)[3.5,4)[4,4.5)
頻數(shù)4815222514642
根據(jù)以上表格
(1)估計(jì)本地區(qū)居民月均用水量的眾數(shù),中位數(shù),平均數(shù).
(2)估計(jì)本地區(qū)居民月均用水量在(1.1,2.8)間的戶數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在平面直角坐標(biāo)系xOy中,已知橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的離心率為$\frac{{\sqrt{2}}}{2}$,且經(jīng)過點(diǎn)($\sqrt{2}$,1),過橢圓的左頂點(diǎn)A作直線l⊥x軸,點(diǎn)M為直線l上的動(dòng)點(diǎn)(點(diǎn)M與點(diǎn)A不重合),點(diǎn)B為橢圓右頂點(diǎn),直線BM交橢圓C于點(diǎn)P.
(Ⅰ)求橢圓C的方程;
(Ⅱ)求證:AP⊥OM;
(Ⅲ)試問$\overrightarrow{OP}$•$\overrightarrow{OM}$是否為定值?若是定值,請(qǐng)求出該定值;若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知a=0.61.2,b=20.3,c=log0.33,則a,b,c之間的大小關(guān)系為(  )
A.c<b<aB.a<c<bC.c<a<bD.b<c<a

查看答案和解析>>

同步練習(xí)冊(cè)答案