已知橢圓的兩焦點在軸上, 且兩焦點與短軸的一個頂點的連線構成斜邊長為2的等腰直角三角形
(1)求橢圓的方程;
(2)過點的動直線交橢圓C于A、B兩點,試問:在坐標平面上是否存在一個定點Q,使得以AB為直徑的圓恒過點Q?若存在求出點Q的坐標;若不存在,請說明理由
(1)橢圓方程為;(2)存在定點,使以AB為直徑的圓恒過點 

試題分析:(1)由橢圓兩焦點與短軸的一個端點的連線構成等腰直角三角形,等腰直角三角形斜邊長為2,即,故,由此可得橢圓方程 (2)首先考慮與坐標軸平行的特殊情況,當與x軸平行時,以AB為直徑的圓的方程為;當與y軸平行時,以AB為直徑的圓的方程為,解方程組求出這兩個圓的交點:
若存在定點Q,則Q的坐標只可能為 
接下來就一般情況證明為所求 設直線,則,將與橢圓方程聯(lián)立,利用韋達定理得:,代入上式證明其等于0即可
試題解析:(1)由橢圓兩焦點與短軸的一個端點的連線構成等腰直角三角形,
又斜邊長為2,即,
橢圓方程為                                  (4分)
(2)當與x軸平行時,以AB為直徑的圓的方程為;
與y軸平行時,以AB為直徑的圓的方程為
,故若存在定點Q,則Q的坐標只可能為    (6分)
下證明為所求:
若直線斜率不存在,上述已經證明 設直線,
,
,                           (8分)

       (10分)

,即以AB為直徑的圓恒過點                  (13分)
注: 此題直接設,得到關于的恒成立問題也可求解
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

知橢圓的兩焦點,離心率為,直線與橢圓交于兩點,點軸上的射影為點

(1)求橢圓的標準方程;
(2)求直線的方程,使的面積最大,并求出這個最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知A,B分別是橢圓C1:+=1的左、右頂點,P是橢圓上異于A,B的任意一點,Q是雙曲線C2:-=1上異于A,B的任意一點,a>b>0.
(1)若P(,),Q(,1),求橢圓C1的方程;
(2)記直線AP,BP,AQ,BQ的斜率分別是k1,k2,k3,k4,求證:k1·k2+k3·k4為定值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系xOy中,橢圓C:=1(a>b>0)的右焦點為F(4m,0)(m>0,m為常數(shù)),離心率等于0.8,過焦點F、傾斜角為θ的直線l交橢圓C于M、N兩點.

(1)求橢圓C的標準方程;
(2)若θ=90°,,求實數(shù)m;
(3)試問的值是否與θ的大小無關,并證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若兩曲線在交點P處的切線互相垂直,則稱該兩曲線在點P處正交,設橢圓與雙曲線在交點處正交,則橢圓的離心率為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C:=1(a>b>0)經過點M(-2,-1),離心率為.過點M作傾斜角互補的兩條直線分別與橢圓C交于異于M的另外兩點P、Q.
(1)求橢圓C的方程;
(2)試判斷直線PQ的斜率是否為定值,證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系xOy中,橢圓C:=1(a>b>0)的左焦點為F,右頂點為A,動點M為右準線上一點(異于右準線與x軸的交點),設線段FM交橢圓C于點P,已知橢圓C的離心率為,點M的橫坐標為.

(1)求橢圓C的標準方程;
(2)設直線PA的斜率為k1,直線MA的斜率為k2,求k1·k2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設F1、F2分別是橢圓=1(a>b>0)的左、右焦點,若在直線x=上存在點P,使線段PF1的中垂線過點F2,則橢圓的離心率的取值范圍是________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

橢圓=1的兩焦點為F1、F2,一直線過F1交橢圓于P、Q,則△PQF2的周長為________.

查看答案和解析>>

同步練習冊答案