14.在數(shù)列{an}中,an=(-$\frac{1}{2}$)n,n∈N*,則$\underset{lim}{n→∞}$an( 。
A.等于$-\frac{1}{2}$B.等于0C.等于$\frac{1}{2}$D.不存在

分析 根據(jù)極限的定義,求出$\underset{lim}{n→∞}$an=$\underset{lim}{n→∞}$${(-\frac{1}{2})}^{n}$的值.

解答 解:數(shù)列{an}中,an=(-$\frac{1}{2}$)n,n∈N*
則$\underset{lim}{n→∞}$an=$\underset{lim}{n→∞}$${(-\frac{1}{2})}^{n}$=0.
故選:B.

點(diǎn)評 本題考查了極限的定義與應(yīng)用問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知在三棱柱ABC-A1B1C1中,△ABC為正三角形,AA1⊥平面ABC,且AA1=AB,過AB做平面α與BC1平行,平面α交平面ACC1A1于直線l,則直線l與BC所成角的余弦值為( 。
A.$\frac{\sqrt{5}}{3}$B.$\frac{\sqrt{5}}{5}$C.$\frac{\sqrt{5}}{10}$D.$\frac{\sqrt{5}}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)函數(shù)f(x)=ax-(a+1)lnx-a(a>0)
(1)求f(x)的單調(diào)區(qū)間
(2)當(dāng)$x=\frac{1}{a}+1$時(shí),證明:$ln({\frac{1}{a}+1})>\frac{1}{1+a}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=$\frac{a}{x}$+xlnx,g(x)=$\frac{x}{{e}^{x}}$.
(1)若?x1,x2∈[0,2],使得g(x1)-g(x2)≥M總成立,求M的最大值;
(2)如果對?s,t∈[$\frac{1}{2}$,2],都有f(s)≥eg(t)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.從某高中隨機(jī)選取5名高一男生,其身高和體重的數(shù)據(jù)如表所示:
 身高x(cm) 160 165 170 175 180
 體重y(kg) 63 66 70 72 74
根據(jù)如表可得回歸方程$\stackrel{∧}{y}$=0.56x+$\stackrel{∧}{a}$,據(jù)此模型可預(yù)報(bào)身高為172cm的高一男生的體重為(  )
A.70.12kgB.70.29kgC.70.55kgD.71.05kg

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若m是正整數(shù)$\int_{-π}^π{{{sin}^2}mxdx}$的值為(  )
A.-1B.0C.1D.π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)a,b,c∈R且a>b,則下列關(guān)系式正確的是( 。
A.ac2>bc2B.a2>b2C.$\frac{1}{a}<\frac{1}$D.a3>b3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在直角坐標(biāo)系xOy 中,已知圓C的參數(shù)方程為$\left\{{\begin{array}{l}{x=1+cosϕ}\\{y=sinϕ}\end{array}}\right.$(φ為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.
(1)求圓的極坐標(biāo)方程;
(2)直線l的極坐方程是$2ρsin(θ+\frac{π}{3})=3\sqrt{3}$,射線OM:θ=$\frac{π}{3}$與圓的交點(diǎn)為O,P,與直線l的交點(diǎn)為Q,求線段PQ的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知不等式(1-a)x2-4x+6>0的解集為{x|-3<x<1}.
(1)求a的值;
(2)若不等式ax2+mx+3≥0的解集為R,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案