已知f(x)=ln|x|,則正確的命題是

[  ]

A.x>0時,(x)=;x<0時,(x)=-

B.x>0時,(x)=,x<0時,(x)不存在

C.x≠0時,(x)=

D.由于x=0無意義,則f(x)=ln|x|不能求導(dǎo)

答案:C
解析:

  先取x的絕對值,然后求導(dǎo).

  ∵(x)=∴當(dāng)x>0時,=(lnx;當(dāng)x<0時,=[ln(-x)×(-x,所以x≠0時,(x)=


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:蚌埠二中2007屆高三第一學(xué)期期中考試數(shù)學(xué)試題 題型:044

解答題

(理)已知f(x)=ln(ex+a)(a>0)(1)求y=f(x)的反函數(shù)及f(x)的導(dǎo)函數(shù).(2)假設(shè)x∈[ln3a,ln4a],不等式:|m-f-1(x)|+lnf′(x)<0恒成立求m范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:河南省開封市2009屆高三年級第一次模擬考試、數(shù)學(xué)試題(理科) 題型:044

已知f(x)=ln(ax+b)-x其中a>0,b>0.

(Ⅰ)求使f(x)在[0,+∞)上是減函數(shù)的充要條件;

(Ⅱ)求f(x)在[0,+∞)上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:山東肥城六中2008屆高中數(shù)學(xué)(新課標(biāo))模擬示范卷4 題型:044

已知f(x)=ln(x2+1)-(ax-2)

(Ⅰ)若函數(shù)f(x)是R上的增函數(shù),求a的取值取值范圍;

(Ⅱ)若|a|<1,求f(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:黑龍江省2010屆高考適應(yīng)性訓(xùn)練考試數(shù)學(xué)理科試題 題型:044

已知f(x)=ln(x+1)-ax(a∈R)

(Ⅰ)求y=f(x)的單調(diào)區(qū)間;

(Ⅱ)當(dāng)a=1時,求f(x)在定義域上的最大值;

(Ⅲ)求證:

查看答案和解析>>

同步練習(xí)冊答案