若函數(shù)f(x)=
-x+3a,x<0
ax,x≥0
(a>0
,且a≠1),在定義域R上滿足
f(x2)-f(x1)
x1-x2
>0
,則a的取值范圍是
 
考點(diǎn):分段函數(shù)的應(yīng)用
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由條件足
f(x2)-f(x1)
x1-x2
>0
知函數(shù)為遞減函數(shù),根據(jù)分段函數(shù)的單調(diào)性即可得到結(jié)論.
解答: 解:由
f(x2)-f(x1)
x1-x2
>0
可得函數(shù)f(x)為減函數(shù),
由分段函數(shù)的表達(dá)式可得
0<a<1
0+3a≥a0

0<a<1
3a≥1
,
0<a<1
a≥
1
3

解得
1
3
≤a<1,
故答案為:[
1
3
,1)
點(diǎn)評:本題主要考查分段函數(shù)單調(diào)性的應(yīng)用,根據(jù)條件判斷函數(shù)是減函數(shù)是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且an≠0(n∈N*),S1,S2,…,Sn,…,成等比數(shù)列,試問數(shù)列a2,a3,a4,…,an成等比數(shù)列嗎?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l:y=3x+3,求;
(1)直線l關(guān)于點(diǎn)M(3,2),對稱的直線的方程.
(2)直線x-y-2=0關(guān)于l對稱的直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(sinx,1),
b
=(cosx-
1
2
)
,函數(shù)f(x)=
a
•(
a
-
b
)
,下列四個(gè)命題:
①f(x)是周期函數(shù),其最小正周期為2π;
②當(dāng)x=
π
8
時(shí),f(x)有最小值2-
2
2
;
[-
8
,-
8
]
是函數(shù)f(x)的一個(gè)單調(diào)遞增區(qū)間;
④點(diǎn)(-
π
8
,2)
是函數(shù)f(x)的一個(gè)對稱中心.
正確命題的個(gè)數(shù)是( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,節(jié)日花壇中有5個(gè)區(qū)域,要把4種不同顏色的花分別種植到這5個(gè)區(qū)域中,要求相同顏色的花不能相鄰栽種,一共有多少種種植方案?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線y2=x+1,P為曲線上任意一點(diǎn),求點(diǎn)P關(guān)于直線y=x+1對稱點(diǎn)Q的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實(shí)數(shù)x,y滿足不等式組
2x-y≥2
ax+y≤4
y≥-1
,目標(biāo)函數(shù)z=x+2y,若a=1,則z的最大值為
 
,若z存在最大值,則a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z=x+yi(x,y∈R),且x,y滿足2x+y+xi=8+(1+y)i,求復(fù)數(shù)z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,二元方程f(x,y)=0的曲線為C,若存在一個(gè)定點(diǎn)A和一個(gè)定角θ(θ∈(0,2π)),使得曲線C上的任意一點(diǎn)以A為中心順時(shí)針(或逆時(shí)針)旋轉(zhuǎn)角θ,所得到的圖形與原曲線重合,則稱曲線C為旋轉(zhuǎn)對稱曲線,給出以下方程及其對應(yīng)的曲線,其中是旋轉(zhuǎn)對稱曲線的是
 
(填上你認(rèn)為正確的曲線).
C1
x2
4
+y2
=1; C2
1-|x|
1-|y|
=0;
C3:x2-y=0(x∈[-2,2]); C4:y-cosx=0(x∈[0,π])

查看答案和解析>>

同步練習(xí)冊答案