在二面角中,已知 , , 則二面角的余弦值為          

 

【答案】

【解析】利用已知中的空間向量的長度公式,運(yùn)用空間基向量表示所求解的向量,結(jié)合已知中的長度和角度,運(yùn)用數(shù)量積式得到為

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知在多面體ABCDE中,DB⊥平面ABC,AE∥BD,且AB=BC=CA=BD=2AE,F(xiàn)為CD的中點(diǎn).
(1)求證:EF⊥平面BCD;
(2)求二面角D-EC-B的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•揭陽一模)如圖(1),在等腰梯形CDEF中,CB、DA是梯形的高,AE=BF=2,AB=2
2
,現(xiàn)將梯形沿CB、DA折起,使EF∥AB且EF=2AB,得一簡單組合體ABCDEF如圖(2)示,已知M,N,P分別為AF,BD,EF的中點(diǎn).
(1)求證:MN∥平面BCF;
(2)求證:AP⊥DE;
(3)當(dāng)AD多長時(shí),平面CDEF與平面ADE所成的銳二面角為60°?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD中,△ABC為正三角形,AD=AB=2,BD=2
3
,AC與BD交于O點(diǎn).將△ABC沿邊AC折起,使D點(diǎn)至P點(diǎn),已知PO與平面ABCD所成的角為θ,且P點(diǎn)在平面ABCD內(nèi)的射影落在△ABC內(nèi).
(Ⅰ)求證:AC⊥平面PBD;
(Ⅱ)若θ=
π
3
時(shí),求二面角A-PB-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:013

在120°二面角α-a-β中, A∈α, B∈β, 已知點(diǎn)A和B到棱a的距離分別是2和3,  且AB=, 則直線AB和棱a所成的角是

[  ]

A.30°  B.45°  C.60°  D.75°

查看答案和解析>>

同步練習(xí)冊答案