設(shè)函數(shù),,其中實數(shù)
(1)若,求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)函數(shù)的圖象只有一個公共點且存在最小值時,記的最小值為,求的值域;
(3)若在區(qū)間內(nèi)均為增函數(shù),求實數(shù)的取值范圍.
(1)詳見解析;(2);(3)

試題分析:(1)這是一個三次函數(shù)求單調(diào)區(qū)間的問題,此類問題比較熟悉,三次函數(shù)的導(dǎo)數(shù)為二次函數(shù),它的零點容易求出,但要注意對零點大小的比較,才能準(zhǔn)確寫出單調(diào)區(qū)間;(2)函數(shù)的圖象只有一個公共點,知方程只有一個根(含重根),結(jié)合有最小值,可求出的取值范圍,而是一個二次函數(shù),易得它提最小值,最后可求出的值域;(3)由(1)的過程和結(jié)果易知的單調(diào)增區(qū)間,應(yīng)是其子區(qū)間,再由的單調(diào)增區(qū)間,也應(yīng)是其子區(qū)間,從而確定的取值范圍,要注意分類討論思想的應(yīng)用.
試題解析:(1)∵,又
∴當(dāng)時,;當(dāng)時,
的遞增區(qū)間為,遞減區(qū)間為
(2)由題意知
恰有一根(含重根)∴,即
,且存在最小值,所以
,∴,∴的值域為
(3)當(dāng)時,內(nèi)是增函數(shù),內(nèi)是增函數(shù),由題意得,解得
當(dāng)時,內(nèi)是增函數(shù),內(nèi)是增函數(shù),由題意得,解得
綜上可知,實數(shù)的取值范圍為
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

為了預(yù)防流感,某學(xué)校對教室用藥熏消毒法進(jìn)行消毒.已知藥物釋放過程中,室內(nèi)每立方米空氣中的含藥量毫克)與時間(小時)成正比;藥物釋放完畢后,的函數(shù)關(guān)系式為為常數(shù)),如圖所示,根據(jù)圖中提供的信息,回答下列問題:

(1)求從藥物釋放開始,每立方米空氣中的含藥量(毫克)與時間(小時)之間的函數(shù)關(guān)系式;
(2)據(jù)測定,當(dāng)空氣中每立方米的含藥量降低到0.25毫克以下時,學(xué)生方可進(jìn)教室.那從藥物釋放開始,至少需要經(jīng)過多少小時后,學(xué)生才能回到教室?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在股票市場上,投資者常參考股價(每一股的價格)的某條平滑均線的變化情況來決定買入或賣出股票。股民老張在研究股票的走勢圖時,發(fā)現(xiàn)一只股票的均線近期走得很有特點:如果按如圖所示的方式建立平面直角坐標(biāo)系,則股價(元)和時間的關(guān)系在段可近似地用解析式來描述,從點走到今天的點,是震蕩筑底階段,而今天出現(xiàn)了明顯的筑底結(jié)束的標(biāo)志,且點和點正好關(guān)于直線對稱。老張預(yù)計這只股票未來的走勢如圖中虛線所示,這里段與段關(guān)于直線對稱,段是股價延續(xù)段的趨勢(規(guī)律)走到這波上升行

情的最高點,F(xiàn)在老張決定取點,點,點來確定解析式中的常數(shù),,并且求得。
(Ⅰ)請你幫老張算出,,并回答股價什么時候見頂(即求點的橫坐標(biāo))
(Ⅱ)老張如能在今天以點處的價格買入該股票3000股,到見頂處點的價格全部賣出,不計其它費用,這次操作他能賺多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(1)求證不論為何實數(shù),總是增函數(shù);
(2)確定的值,使為奇函數(shù);
(3)當(dāng)為奇函數(shù)時,求的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

一企業(yè)生產(chǎn)的某產(chǎn)品在不做電視廣告的前提下,每天銷售量為b噸.經(jīng)市場調(diào)查后得到如下規(guī)律:若對產(chǎn)品進(jìn)行電視廣告的宣傳,每天的銷售量S(噸)與電視廣告每天的播放量n(次)的關(guān)系可用如圖所示的程序框圖來體現(xiàn).

(1)試寫出該產(chǎn)品每天的銷售量S(噸)關(guān)于電視廣告每天的播放量n(次)的函數(shù)關(guān)系式;
(2)要使該產(chǎn)品每天的銷售量比不做電視廣告時的銷售量至少增加90%,則每天電視廣告的播放量至少需多少次?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知是定義在上的奇函數(shù),且,若,恒成立.
(1)判斷上是增函數(shù)還是減函數(shù),并證明你的結(jié)論;
(2)若對所有恒成立,求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)的定義域為
(1)求;
(2)當(dāng)時,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若方程在(-1,1)上有實根,則的取值范圍為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù),其中,若對任意的非零實數(shù),存在唯一的非零實數(shù),使得成立,則k的最小值為( )
A.B.5C.6D.8

查看答案和解析>>

同步練習(xí)冊答案