【題目】已知函數(shù),當(dāng)時,恒有當(dāng)時,

求證: 是奇函數(shù);

,試求在區(qū)間上的最值;

)是否存在,使對于任意恒成立若存在,求出實(shí)數(shù)的取值范圍;若不存在,說明理由.

【答案】(Ⅰ)證明見解析;(Ⅱ) ;(Ⅲ) .

【解析】試題分析:(1)x=y=0,求出 f(0),令y=-x,可以得出f(-x)f(x)的關(guān)系,從而判斷出函數(shù)的奇偶性;(2)先判斷函數(shù)的單調(diào)性,取值 ,賦值 ,得出,根據(jù),利用已知當(dāng)時, 比較出的大小,得出函數(shù)為增函數(shù),求出函數(shù)在區(qū)間上的最值;(3)根據(jù)函數(shù)為奇函數(shù)且為增函數(shù),轉(zhuǎn)化不等式,利用換元法簡化不等式,利用極值原理求出m 的范圍.

試題解析:

,則,

.令,則,

,即為奇函數(shù);

任取,且

,∴,

∵當(dāng)時, ,且,∴,即

為增函數(shù),

∴當(dāng)時,函數(shù)有最小值,

當(dāng)時,函數(shù)有最大值, ;

∵函數(shù)為奇函數(shù),

∴不等式

可化為,

又∵為增函數(shù),∴

,則

問題轉(zhuǎn)化為上恒成立,

對任意恒成立,

,只需,

,

∴當(dāng)時, ,則

的取值范圍是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)的定義域?yàn)镈,若對于任意x1 , x2∈D,當(dāng)x1<x2時,都有f(x1)≤f(x2),則稱函數(shù)f(x)在D上為非減函數(shù).設(shè)函數(shù)f(x)在[0,1]上為非減函數(shù),且滿足以下三個條件:①f(0)=0;② ;③f(1﹣x)=1﹣f(x).則 =

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】共享單車是指由企業(yè)在校園、公交站點(diǎn)、商業(yè)區(qū)、公共服務(wù)區(qū)等場所提供的自行車單車共享服務(wù),由于其依托“互聯(lián)網(wǎng)+”,符合“低碳出行”的理念,已越來越多地引起了人們的關(guān)注.某部門為了對該城市共享單車加強(qiáng)監(jiān)管,隨機(jī)選取了100人就該城市共享單車的推行情況進(jìn)行問卷調(diào)查,并將問卷中的這100人根據(jù)其滿意度評分值(百分制)按照[50,60),[60,70),…,[90,100]分成5組,制成如圖所示頻率分直方圖.
(Ⅰ)求圖中x的值;
(Ⅱ)已知滿意度評分值在[90,100]內(nèi)的男生數(shù)與女生數(shù)的比為2:1,若在滿意度評分值為[90,100]的人中隨機(jī)抽取4人進(jìn)行座談,設(shè)其中的女生人數(shù)為隨機(jī)變量X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), . 

(1)若函數(shù)上是減函數(shù),求實(shí)數(shù)的取值范圍;

(2)是否存在整數(shù), ,使得的解集恰好是,若存在,求出, 的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知指數(shù)函數(shù)= 滿足定義域?yàn)?/span>的函數(shù)=是奇函數(shù).

(1)確定函數(shù)的解析式;

(2)若對任意的不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線C的參數(shù)方程: ,直線l的參數(shù)方程為
(1)若直線l與曲線C只有一個公共點(diǎn),求實(shí)數(shù)a;
(2)若點(diǎn)P,Q分別為直線l與曲線C上的動點(diǎn),若 ,求實(shí)數(shù)a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知冪函數(shù)為偶函數(shù).

(1)求的解析式;

(2)若函數(shù)在區(qū)間上為單調(diào)函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ,
(1)求函數(shù)的圖象在點(diǎn) 處的切線方程;
(2)當(dāng) 時,求證: ;
(3)若 對任意的 恒成立,求實(shí)數(shù) 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,若 ,則 =

查看答案和解析>>

同步練習(xí)冊答案