20.已知數(shù)列{an}滿足a1=1,且${a_n}=2{a_{n-1}}+{2^n}$(n≥2,n∈N*),則an=(2n-1)•2n-1

分析 an=2an-1+2n,兩邊同時除以2n,得$\frac{{a}_{n}}{{2}^{n}}=\frac{{a}_{n-1}}{{2}^{n-1}}+1$,從而數(shù)列{$\frac{{a}_{n}}{{2}^{n}}$}是以$\frac{1}{2}$為首項,以1為公差的等差數(shù)列,由此能求出an.

解答 解:∵an=2an-1+2n,兩邊同時除以2n,得$\frac{{a}_{n}}{{2}^{n}}=\frac{{a}_{n-1}}{{2}^{n-1}}+1$,
∴$\frac{{a}_{n}}{{2}^{n}}-\frac{{a}_{n-1}}{{2}^{n-1}}$=1,又$\frac{{a}_{1}}{{2}^{1}}$=$\frac{1}{2}$,
∴數(shù)列{$\frac{{a}_{n}}{{2}^{n}}$}是以$\frac{1}{2}$為首項,以1為公差的等差數(shù)列,
∴$\frac{{a}_{n}}{{2}^{n}}=\frac{1}{2}+$n-1=n-$\frac{1}{2}$,
∴an=(n-$\frac{1}{2}$)•2n,即${a_n}=(2n-1)•{2^{n-1}}$.
故答案為:(2n-1)•2n-1

點評 本題考查數(shù)列的通項公式的求法,是中檔題,解題時要認(rèn)真審題,注意構(gòu)造法的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.直線$x-\sqrt{3}y+5=0$的傾斜角是30°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)f(x)=cosx+ax是單調(diào)函數(shù),則實數(shù)a的取值范圍是( 。
A.[1,+∞)B.(1,+∞)C.(-∞,-1]∪[1,+∞)D.(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知正方形ABCD的邊長為a,將△ACD沿對角線AC折起,使BD=a,則直線DB和平面ABC所成的角的大小為( 。
A.60°B.45°C.30°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知離散型隨機變量x的分布列如下:
x123
p$\frac{1}{3}$a$\frac{1}{6}$
則x的數(shù)學(xué)期望E(x)=( 。
A.$\frac{5}{6}$B.$\frac{1}{2}$C.$2a+\frac{5}{6}$D.$\frac{11}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知圓B:(x-1)2+(y-1)2=2,過原點O作兩條不同的直線l1,l2與圓B都相交.
(1)從B分別作l1,l2的垂線,垂足分別為A,C,若$\overrightarrow{BA}•\overrightarrow{BC}=0$,$|\overrightarrow{BA}|=|\overrightarrow{BC}|$,求直線AC的方程;
(2)若l1⊥l2,且l1,l2與圓B分別相交于P,Q兩點,求△OPQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知直線l1:ax+(a+2)y+1=0,l2:x+ay+2=0(a∈R),則“l(fā)1∥l2”是“a=-1”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若點A(3,1)在直線mx+ny+1=0上,其中mn>0,則$\frac{3}{m}+\frac{1}{n}$的最大值為-16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)y=2sin($\frac{π}{6}$-2x),(x∈[0,π])為增函數(shù)的區(qū)間是(  )
A.[0,$\frac{π}{3}$]B.[$\frac{π}{12}$,$\frac{7π}{12}$]C.[$\frac{π}{3}$,$\frac{5π}{6}$]D.[$\frac{5π}{6}$,π]

查看答案和解析>>

同步練習(xí)冊答案