15.已知離散型隨機(jī)變量x的分布列如下:
x123
p$\frac{1}{3}$a$\frac{1}{6}$
則x的數(shù)學(xué)期望E(x)=( 。
A.$\frac{5}{6}$B.$\frac{1}{2}$C.$2a+\frac{5}{6}$D.$\frac{11}{6}$

分析 利用概率的性質(zhì)可得:$\frac{1}{3}+a$+$\frac{1}{6}$=1,解得a,再利用數(shù)學(xué)期望計(jì)算公式即可得出.

解答 解:∵$\frac{1}{3}+a$+$\frac{1}{6}$=1,解得a=$\frac{1}{2}$.
x的數(shù)學(xué)期望E(x)=$1×\frac{1}{3}+$$2×\frac{1}{2}+3×\frac{1}{6}$=$\frac{11}{6}$.
故選:D.

點(diǎn)評(píng) 本題考查了概率的性質(zhì)、數(shù)學(xué)期望計(jì)算公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知命題p:“$\frac{2{x}^{2}}{m}$+$\frac{{y}^{2}}{m-1}$=1是焦點(diǎn)在x軸上的橢圓的標(biāo)準(zhǔn)方程”,命題q:?x1∈R,8x12-8mx1+7m-6=0.若p∨q為真命題,p∧q為假命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.點(diǎn)P(1,-2)到直線(xiàn)3x-4y-1=0的距離是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.過(guò)點(diǎn)(3,0)的l與圓x2+y2+x-6y+3=0相交于P,Q兩點(diǎn),且OP⊥OQ(O為原點(diǎn)),求l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知圓C與兩坐標(biāo)軸都相切,圓心C到直線(xiàn)y=-x的距離等于$\sqrt{2}$.
(1)求圓C的方程;
(2)若直線(xiàn)l與x軸正半軸與y正半軸分別交于A(m,0),B(0,n)兩點(diǎn)(m>2,n>2),且直線(xiàn)l與圓C相切,求三角形AOB面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知數(shù)列{an}滿(mǎn)足a1=1,且${a_n}=2{a_{n-1}}+{2^n}$(n≥2,n∈N*),則an=(2n-1)•2n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)是定義在R上的奇函數(shù),且在區(qū)間[0,+∞)上單調(diào)遞減.
(1)寫(xiě)出f(x)在R上的單調(diào)性(不用證明);
(2)若f(1-a)+f(2a-5)<0,請(qǐng)求出實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.(1)已知橢圓經(jīng)過(guò)點(diǎn)A(0,$\frac{5}{3}$)和B(1,1),求橢圓的標(biāo)準(zhǔn)方程.
(2)若拋物線(xiàn)y2=2px(p>0)上的一點(diǎn)M 到焦點(diǎn)及對(duì)稱(chēng)軸的距離分別為10和6,求拋物線(xiàn)的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.以下說(shuō)法正確的是(  )
A.球的截面中過(guò)球心的截面面積未必最大
B.圓錐截去一個(gè)小圓錐后剩下來(lái)的部分是圓臺(tái)
C.棱錐截去一個(gè)小棱錐后剩下來(lái)的部分是棱臺(tái)
D.用兩個(gè)平行平面去截圓柱,截得的中間部分還是圓柱

查看答案和解析>>

同步練習(xí)冊(cè)答案