已知可導(dǎo)函數(shù)的導(dǎo)函數(shù)滿足,則不等式的解集是   
.

試題分析:因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240307287381049.png" style="vertical-align:middle;" />.又因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030728675479.png" style="vertical-align:middle;" />>所以,即函數(shù)是遞增的.又因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030728706707.png" style="vertical-align:middle;" />.即.所以x>1.本題的關(guān)鍵是由要構(gòu)造出函數(shù).通過該函數(shù)的單調(diào)性即可得到結(jié)論.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題13分)己知函數(shù)
(1)試探究函數(shù)的零點(diǎn)個(gè)數(shù);
(2)若的圖象與軸交于兩點(diǎn),中點(diǎn)為,設(shè)函數(shù)的導(dǎo)函數(shù)為, 求證:。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)數(shù)列的前項(xiàng)和為,已知(n∈N*).
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)求證:當(dāng)x>0時(shí),
(Ⅲ)令,數(shù)列的前項(xiàng)和為.利用(2)的結(jié)論證明:當(dāng)n∈N*且n≥2時(shí),.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)的反函數(shù)為,設(shè)的圖象上在點(diǎn)處的切線在y軸上的截距為,數(shù)列{}滿足: 
(Ⅰ)求數(shù)列{}的通項(xiàng)公式;
(Ⅱ)在數(shù)列中,僅最小,求的取值范圍;
(Ⅲ)令函數(shù)數(shù)列滿足,求證:對(duì)一切n≥2的正整數(shù)都有 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù).
(I)若,求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)求證:
(Ⅲ)若函數(shù)的圖象在點(diǎn)處的切線的傾斜角為,對(duì)于任意的,函數(shù)的導(dǎo)函數(shù))在區(qū)間上總不是單調(diào)函數(shù),求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù).
(Ⅰ)討論函數(shù)的單調(diào)性;
(Ⅱ)設(shè),證明:對(duì)任意,總存在,使得.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),
(1)若函數(shù)存在極值點(diǎn),求實(shí)數(shù)b的取值范圍;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)當(dāng)時(shí),令,(),()為曲線y=上的兩動(dòng)點(diǎn),O為坐標(biāo)原點(diǎn),能否使得是以O(shè)為直角頂點(diǎn)的直角三角形,且斜邊中點(diǎn)在y軸上?請(qǐng)說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),且在時(shí)函數(shù)取得極值.
(1)求的單調(diào)增區(qū)間;
(2)若,
(Ⅰ)證明:當(dāng)時(shí),的圖象恒在的上方;
(Ⅱ)證明不等式恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

曲線在點(diǎn)處的切線方程為________________.

查看答案和解析>>

同步練習(xí)冊(cè)答案