分析 (1)求得拋物線的焦點(diǎn)坐標(biāo),則c=$\sqrt{6}$,將M代入橢圓方程即可求得a和b的值,求得橢圓方程;
(2)設(shè)直線l的方程,代入橢圓方程,由直線的斜率公式,及韋達(dá)定理定理求得k1+k2=0,故MA,MB與x軸始終圍成等腰三角形.
解答 解:(1)由拋物線${y^2}=4\sqrt{6}x$的焦點(diǎn)F($\sqrt{6}$,0),由橢圓C上有一點(diǎn)M(2,1),
由題意可知設(shè)橢圓方程:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1$(a>b>0),c2=6,則a2-b2=6,
將M代入橢圓方程$\frac{4}{{a}^{2}}+\frac{1}{^{2}}=1$,解得:a2=8,b2=2,
∴橢圓的標(biāo)準(zhǔn)方程:$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{2}=1$;
(2)證明:由l∥OM,則k1=kOM=$\frac{1}{2}$,設(shè)直線l的方程y=$\frac{1}{2}$x+m,
由直線l與橢圓A,B兩點(diǎn),
聯(lián)立$\left\{\begin{array}{l}{y=\frac{1}{2}x+m}\\{\frac{{x}^{2}}{8}+\frac{{y}^{2}}{2}=1}\end{array}\right.$,消去y得:x2+2mx+2m2-4=0,
由x1x2=2m2-4,x1+x2=-2m,
∴△=(2m)2-4(2m2-4)=4(4-m2)>0,
∴m的取值范圍是{m|-2<m<2,且m≠0},
設(shè)MA,MB的斜率分別為k1,k2,
∴k1+k2=0,
則A(x1,y1),B(x2,y2),則k1=$\frac{{y}_{1}-1}{{x}_{1}-2}$,k2=$\frac{{y}_{2}-1}{{x}_{2}-2}$,
∴k1+k2=$\frac{{y}_{1}-1}{{x}_{1}-2}$+$\frac{{y}_{2}-1}{{x}_{2}-2}$,
=$\frac{({y}_{1}-1)({x}_{2}-2)+({y}_{2}-1)({x}_{1}-2)}{({x}_{1}-2)({x}_{2}-2)}$,=$\frac{{x}_{1}{x}_{2}+(m-2)({x}_{1}+{x}_{2})-4(m-1)}{({x}_{1}-2)({x}_{2}-2)}$,
=$\frac{2{m}^{2}-4-2{m}^{2}+4m-4m+4}{({x}_{1}-2)({x}_{2}-2)}$=0,
故MA,MB與x軸始終圍成等腰三角形.
點(diǎn)評(píng) 本題考查橢圓的標(biāo)準(zhǔn)方程及性質(zhì),直線與橢圓的位置關(guān)系,考查韋達(dá)定理,直線的斜率公式,考查計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | A${\;}_{4}^{3}$ | B. | C${\;}_{4}^{3}$ | C. | 34 | D. | 43 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | x>2 | B. | $\sqrt{3}<$x<2 | C. | 2<x<$\frac{4}{3}$$\sqrt{3}$ | D. | 2<x≤$\frac{4}{3}$$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $a>\frac{1}{2}$ | B. | a>$\frac{1}{3}$ | C. | 0<a<$\frac{1}{2}$ | D. | a>0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{6}π$ | B. | $\frac{1}{3}π$ | C. | $\frac{5}{6}π$ | D. | $\frac{2}{3}π$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com