4.下列關(guān)于算法的描述正確的是( 。
A.算法與求解一個(gè)問(wèn)題的方法相同
B.算法只能解決一個(gè)問(wèn)題,不能重復(fù)使用
C.算法過(guò)程要一步一步執(zhí)行
D.有的算法執(zhí)行完以后,可能沒(méi)有結(jié)果

分析 利用算法的概念:算法通常是指用計(jì)算機(jī)按照一定規(guī)則解決一類(lèi)問(wèn)題的明確和有限的步驟. 判斷即可.

解答 解:由算法的概念可知:
算法不是一個(gè)問(wèn)題的解題過(guò)程,算法可以理解為有基本運(yùn)算及規(guī)定的運(yùn)算順序所構(gòu)成的完整的解題步驟.
或者看成按照要求設(shè)計(jì)好的有限的確切的計(jì)算序列,并且這樣的步驟和序列可以解決一類(lèi)問(wèn)題,故A,B錯(cuò);
求解某一類(lèi)問(wèn)題的算法不是唯一的,故C正確;
算法的概念可知:算法是有限步,結(jié)果明確性,D是不正確的.
故選C.

點(diǎn)評(píng) 考查了算法的概念.屬于基本概念的考查,應(yīng)牢記.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知等比數(shù)列{an}的前n項(xiàng)和為Sn,且2n+1,Sn,a成等差數(shù)列(n∈N*).
(1)求a的值及數(shù)列{an}的通項(xiàng)公式;
(2)若bn=-(an+1)an,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.在△ABC中,(2a-c)cosB=bcosC,sin2A=sin2B+sin2C-λsinBsinC.
(1)求角B的大小;
(2)若$λ=\sqrt{3}$,試判斷△ABC的形狀;
(3)若△ABC為鈍角三角形,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗實(shí)線畫(huà)出的是某多面體的三視圖,則該多面體的表面積為( 。
A.16B.$24+8\sqrt{5}$C.48D.$24+16\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.下面是函數(shù)y=f(x)的部分對(duì)應(yīng)值,則f[f($\sqrt{3}$)]等于(  )
x-3-2-10$\sqrt{2}$$\sqrt{3}$$\sqrt{5}$
y$\sqrt{3}$$\sqrt{2}$0$\sqrt{5}$-30-1
A.0B.$\sqrt{2}$C.$\sqrt{3}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.一個(gè)幾何體的三視圖如圖所示,則該幾何體的表面積為3π+4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.某公司從大學(xué)招收畢業(yè)生,經(jīng)過(guò)綜合測(cè)試,錄用了14名男生和6名女生,這20名畢業(yè)生的測(cè)試成績(jī)?nèi)缜o葉圖所示(單位:分).公司規(guī)定:成績(jī)?cè)?80分以上者到甲部門(mén)工作,180分以下者到乙部門(mén)工作,另外只有成績(jī)高于180分的男生才能擔(dān)任助理工作.                          
(1)如果用分層抽樣的方法從甲部門(mén)人選和乙部門(mén)人選中選取8人,再?gòu)倪@8人中選3人,那么至少有一人是甲部門(mén)人選的概率是多少?
(2)若從所有甲部門(mén)人選中隨機(jī)選3人,用X表示所選人員中能擔(dān)任助理工作的人數(shù),寫(xiě)出X的分布列,并求出X的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.設(shè)函數(shù)f(x)=$\frac{1}{2}$x2-ex,g(x)=x-elnx.
(1)求函數(shù)g(x)的極值;
(2)若對(duì)任意的x∈[$\frac{1}{e}$,+∞),方程f(x)=ag(x)有且只有兩個(gè)實(shí)根,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的右焦點(diǎn)為F(2,0),設(shè)A、B為雙曲線上關(guān)于原點(diǎn)對(duì)稱(chēng)的兩點(diǎn),AF的中點(diǎn)為M,BF的中點(diǎn)為N,若原點(diǎn)O在以線段MN為直徑的圓上,直線AB的斜率為$\frac{{3\sqrt{7}}}{7}$,則雙曲線的離心率為( 。
A.4B.2C.$\sqrt{5}$D.$\sqrt{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案