【題目】已知函數(shù).其中是自然對(duì)數(shù)的底數(shù).

1)求函數(shù)在點(diǎn)處的切線方程;

2)若不等式對(duì)任意的恒成立,求實(shí)數(shù)的取值范圍.

【答案】(1)

(2).

【解析】

(1)利用導(dǎo)數(shù)的幾何意義求出切線的斜率,再求出切點(diǎn)坐標(biāo)即可得在點(diǎn)處的切線方程;

(2)令,然后利用導(dǎo)數(shù)并根據(jù)a的情況研究函數(shù)的單調(diào)性和最值.

1,,

,

,

∴切線方程為,即.

2)令,

①若,則上單調(diào)遞減,又,

恒成立,∴上單調(diào)遞減,又,

恒成立.

②若,令,

,易知上單調(diào)遞減,

上單調(diào)遞減,,

當(dāng)時(shí),上恒成立,

上單調(diào)遞減,即上單調(diào)遞減,

,∴恒成立,∴上單調(diào)遞減,

,∴恒成立,

當(dāng)時(shí),使

遞增,此時(shí),∴

遞增,∴,不合題意.

綜上,實(shí)數(shù)的取值范圍是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱柱中,底面為菱形,.

1)證明:平面平面

2)若,是等邊三角形,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從甲、乙兩種樹苗中各抽測(cè)了10株樹苗的高度,其莖葉圖如圖.根據(jù)莖葉圖,下列描述正確的是(

A.甲種樹苗的平均高度大于乙種樹苗的平均高度,且甲種樹苗比乙種樹苗長(zhǎng)得整齊

B.甲種樹苗的平均高度大于乙種樹苗的平均高度,但乙種樹苗比甲種樹苗長(zhǎng)得整齊

C.乙種樹苗的平均高度大于甲種樹苗的平均高度,且乙種樹苗比甲種樹苗長(zhǎng)得整齊

D.乙種樹苗的平均高度大于甲種樹苗的平均高度,但甲種樹苗比乙種樹苗長(zhǎng)得整齊

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,四棱錐中,側(cè)面底面,底面是平行四邊形,,,中點(diǎn),點(diǎn)在線段上.

(Ⅰ)證明:;

(Ⅱ)若 ,求實(shí)數(shù)使直線與平面所成角和直線與平面所成角相等.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

(1)求直線與曲線公共點(diǎn)的極坐標(biāo);

(2)設(shè)過(guò)點(diǎn)的直線交曲線,兩點(diǎn),且的中點(diǎn)為,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)圓的圓心為,直線過(guò)點(diǎn)且與軸不重合,交圓,兩點(diǎn),過(guò)點(diǎn)的平行線交于點(diǎn).

(1)求的值;

(2)設(shè)點(diǎn)的軌跡為曲線,直線與曲線相交于兩點(diǎn),與直線相交于點(diǎn),試問(wèn)在橢圓上是否存在一定點(diǎn),使得,,成等差數(shù)列(其中,分別指直線,的斜率).若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】科學(xué)家在研究物體的熱輻射能力時(shí)定義了一個(gè)理想模型叫“黑體”,即一種能完全吸收照在其表面的電磁波(光)的物體.然后,黑體根據(jù)其本身特性再向周邊輻射電磁波,科學(xué)研究發(fā)現(xiàn)單位面積的黑體向空間輻射的電磁波的功率與該黑體的絕對(duì)溫度次方成正比,即,為玻爾茲曼常數(shù).而我們?cè)谧鰧?shí)驗(yàn)數(shù)據(jù)處理的過(guò)程中,往往不用基礎(chǔ)變量作為橫縱坐標(biāo),以本實(shí)驗(yàn)結(jié)果為例,為縱坐標(biāo),以為橫坐標(biāo),則能夠近似得到______(曲線形狀),那么如果繼續(xù)研究該實(shí)驗(yàn),若實(shí)驗(yàn)結(jié)果的曲線如圖所示,試寫出其可能的橫縱坐標(biāo)的變量形式______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知的三個(gè)頂點(diǎn)都在橢圓C上,且過(guò)橢圓的左焦點(diǎn)F,O為坐標(biāo)原點(diǎn),M上,且.

1)求點(diǎn)M的軌跡方程;

2)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,橢圓的參數(shù)方程為為參數(shù)),以原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

(1)求經(jīng)過(guò)橢圓右焦點(diǎn)且與直線垂直的直線的極坐標(biāo)方程;

(2)若為橢圓上任意-點(diǎn),當(dāng)點(diǎn)到直線距離最小時(shí),求點(diǎn)的直角坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案