8.若一口袋中裝有4個白球3個紅球,現(xiàn)從中任取兩球,則取出的兩球中至少有一個白球的概率為( 。
A.$\frac{1}{3}$B.$\frac{1}{6}$C.$\frac{6}{7}$D.$\frac{2}{21}$

分析 取出的兩球中至少有一個白球的對立事件是取出的兩個球都是紅球,由此利用對立事件概率計算公式能求出取出的兩球中至少有一個白球的概率.

解答 解:∵一口袋中裝有4個白球3個紅球,現(xiàn)從中任取兩球,
∴基本事件總數(shù)${C}_{7}^{2}$=21,
∵取出的兩球中至少有一個白球的對立事件是取出的兩個球都是紅球,
∴取出的兩球中至少有一個白球的概率為:
p=1-$\frac{{C}_{3}^{2}}{{C}_{7}^{2}}$=$\frac{18}{21}=\frac{6}{7}$.
故選:C.

點評 本題考查概率的求法,是基礎題,解題時要認真審題,注意等可能事件概率計算公式的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

18.已知向量$\overrightarrow{a}$=(1,-1),$\overrightarrow$=(-1,2),若($\overrightarrow{a}$-λ$\overrightarrow$)⊥$\overrightarrow{a}$,則實數(shù)λ的值是( 。
A.$\frac{2}{3}$B.$\frac{3}{2}$C.-$\frac{3}{2}$D.-$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知等差數(shù)列{an}的各項均為正數(shù),a1=1,且a2-$\frac{1}{2}$,a3,a6-$\frac{1}{2}$成等比數(shù)列.
(Ⅰ)求an的通項公式;
(Ⅱ)設bn=$\frac{1}{{{a_n}{a_{n+1}}}}$,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知奇函數(shù)f(x)是R上的單調函數(shù),若關于x的方程f(x2)+f(k-x)=0在[0,1]無實數(shù)解,則實數(shù)k的取值范圍是{k|k<0,或 k>$\frac{1}{4}$}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.圓(x-1)2+y2=9的半徑為3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.某經銷商計劃銷售一款新型的空氣凈化器,經市場凋研發(fā)現(xiàn)以下規(guī)律:當每臺凈化器的利潤為x(單位:元,x>0)時,銷售量q(x)(單位:百臺)與x的關系滿足:若x不超過20,則q(x)=$\frac{1260}{x+1}$;若x大于或等于180,則銷售為零;當20≤x≤180時.q(x)=a-b$\sqrt{x}$(a,b為實常數(shù)).
(1)求函數(shù)q(x)的表達式;
(2)當x為多少時,總利潤(單位:元)取得最大值,并求出該最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.求和:3+2×32+3×33+4×34+…+n•3n

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.某商店銷售某種商品,成本函數(shù)為C(x)=5x+200(元),該商品的價格函數(shù)為P(x)=10-0.01x(元/件)(其中x為商品的銷售量,單位:件),問如何定價使利潤最大?最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.一物體在曲線s=$\root{3}{{t}^{2}}$上運動,則該物體在t=3時的瞬時速度為$\frac{2\root{3}{9}}{9}$.

查看答案和解析>>

同步練習冊答案