【題目】執(zhí)行下面的程序框圖,如果輸入的t=0.01,則輸出的n=( )
A.5
B.6
C.7
D.8
【答案】C
【解析】解:第一次執(zhí)行循環(huán)體后,S= ,m= ,n=1,不滿足退出循環(huán)的條件; 再次執(zhí)行循環(huán)體后,S= ,m= ,n=2,不滿足退出循環(huán)的條件;
再次執(zhí)行循環(huán)體后,S= ,m= ,n=3,不滿足退出循環(huán)的條件;
再次執(zhí)行循環(huán)體后,S= ,m= ,n=4,不滿足退出循環(huán)的條件;
再次執(zhí)行循環(huán)體后,S= ,m= ,n=5,不滿足退出循環(huán)的條件;
再次執(zhí)行循環(huán)體后,S= ,m= ,n=6,不滿足退出循環(huán)的條件;
再次執(zhí)行循環(huán)體后,S= ,m= ,n=7,滿足退出循環(huán)的條件;
故輸出的n值為7,
故選:C
【考點精析】利用程序框圖對題目進行判斷即可得到答案,需要熟知程序框圖又稱流程圖,是一種用規(guī)定的圖形、指向線及文字說明來準確、直觀地表示算法的圖形;一個程序框圖包括以下幾部分:表示相應操作的程序框;帶箭頭的流程線;程序框外必要文字說明.
科目:高中數(shù)學 來源: 題型:
【題目】為了研究學生的數(shù)學核素養(yǎng)與抽象(能力指標)、推理(能力指標)、建模(能力指標)的相關性,并將它們各自量化為1、2、3三個等級,再用綜合指標的值評定學生的數(shù)學核心素養(yǎng);若,則數(shù)學核心素養(yǎng)為一級;若,則數(shù)學核心素養(yǎng)為二級;若,則數(shù)學核心素養(yǎng)為三級,為了了解某校學生的數(shù)學核素養(yǎng),調(diào)查人員隨機訪問了某校10名學生,得到如下結果:
學生編號 | ||||||||||
(1)在這10名學生中任取兩人,求這兩人的建模能力指標相同的概率;
(2)從數(shù)學核心素養(yǎng)等級是一級的學生中任取一人,其綜合指標為,從數(shù)學核心素養(yǎng)等級不是一級的學生中任取一人,其綜合指標為,記隨機變量,求隨機變量的分布列及其數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】學校藝術節(jié)對同一類的,,,四項參賽作品,只評一項一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學對這四項參賽作品預測如下:
甲說:“是或作品獲得一等獎”;
乙說:“作品獲得一等獎”;
丙說:“,兩項作品未獲得一等獎”;
丁說:“是作品獲得一等獎”.
若這四位同學中只有兩位說的話是對的,則獲得一等獎的作品是__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】空間四邊形PABC的各邊及對角線長度都相等,D、E、F、G分別是AB、BC、CA、AP的中點,下列四個結論中成立的是
①BC∥平面PDF
②DF⊥平面PAE
③平面GDF∥平面PBC
④平面PAE⊥平面ABC.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱柱ABC﹣A1B1C1中,AA1⊥平面ABC,AC⊥BC,E、F分別在線段B1C1和AC上,B1E=3EC1 , AC=BC=CC1=4
(1)求證:BC⊥AC1;
(2)試探究滿足EF∥平面A1ABB1的點F的位置,并給出證明.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知兩定點, 和一動點,給出下列結論:
①若,則點的軌跡是橢圓;
②若,則點的軌跡是雙曲線;
③若,則點的軌跡是圓;
④若,則點的軌跡關于原點對稱;
⑤若直線與斜率之積等于,則點的軌跡是橢圓(除長軸兩端點).
其中正確的是__________(填序號).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某科研小組研究發(fā)現(xiàn):一棵水蜜桃樹的產(chǎn)量(單位:百千克)與肥料費用(單位:百元)滿足如下關系:,且投入的肥料費用不超過5百元.此外,還需要投入其他成本(如施肥的人工費等)百元.已知這種水蜜桃的市場售價為16元/千克(即16百元/百千克),且市場需求始終供不應求.記該棵水蜜桃樹獲得的利潤為(單位:百元).
(1)求利潤函數(shù)的函數(shù)關系式,并寫出定義域;
(2)當投入的肥料費用為多少時,該水蜜桃樹獲得的利潤最大?最大利潤是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若函數(shù)在實數(shù)集上的圖象是連續(xù)不斷的,且對任意實數(shù)存在常數(shù)使得恒成立,則稱是一個“關于函數(shù)”.現(xiàn)有下列“關于函數(shù)”的結論:
①常數(shù)函數(shù)是“關于函數(shù)”;
②正比例函數(shù)必是一個“關于函數(shù)”;
③“關于函數(shù)”至少有一個零點;
④是一個“關于函數(shù)”.
其中正確結論的序號是_______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設數(shù)列{an}的前n項和為Sn,點 (n∈N*)均在函數(shù)y=3x-2的圖象上.
(1)求數(shù)列{an}的通項公式;
(2)設bn=,Tn是數(shù)列{bn}的前n項和,求使得Tn<對所有n∈N*都成立的最小正整數(shù)m.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com