已知數(shù)列{an}中,前n項(xiàng)和為Sn,點(diǎn)(an+1,Sn+1)在直線y=4x-2,其中n=1,2,3…,
(Ⅰ)設(shè)bn=an+1-2an,且a1=1,求證數(shù)列{bn}是等比數(shù)列;
(Ⅱ)令f(x)=b1x+b2x2+…+bnxn,求函數(shù)f(x)在點(diǎn)x=1處的導(dǎo)數(shù)f′(1)并比較f′(1)與6n2-3n的大小.
【答案】
分析:(I)由點(diǎn)(a
n+1,S
n+1)在直線y=4x-2上,知S
n+1=4a
n+2.所以a
n+2=4a
n+1-4a
n.再由b
n=a
n+1-2a
n,知b
n+1=2b
n.上此知數(shù)列{b
n}是首項(xiàng)為3,公比為2的等比數(shù)列.
(II)由b
n=3•2
n-1,f(x)=b
1x+b
2x
2+…+b
nx
n,知f′(x)=b
1+2b
2x+…+nb
nx
n-1.從而f′(1)=b
1+2b
2+…+nb
n=3(1+2•2+3•2
2+…+n•3•2
n-1).T
n=1+2•2+3•2
2+…+n•2
n-1,由錯位相減法知T
n=(n-1)•2
n+1.f′(1)=3(n-1)•2
n+3.由f′(1)-(6n
2-3n)=3[(n-1)•2
n+1-2n
2+n]能推導(dǎo)出f′(1)>6n
2-3n.
解答:解:(I)由已知點(diǎn)(a
n+1,S
n+1)在直線y=4x-2上.
∴S
n+1=4(a
n+1)-2.
即S
n+1=4a
n+2.(n=1,2,3,)
∴S
n+2=4a
n+1+2.
兩式相減,得S
n+2-S
n+1=4a
n+1-4a
n.
即a
n+2=4a
n+1-4a
n.(3分)
a
n+2-2a
n+1=2(a
n+1-2a
n).
∵b
n=a
n+1-2a
n,(n=1,2,3,)
∴b
n+1=2b
n.
由S
2=a
1+a
2=4a
1+2,a
1=1.
解得a
2=5,b
1=a
2-2a
1=3.
∴數(shù)列{b
n}是首項(xiàng)為3,公式為2的等比數(shù)列.(6分)
(II)由(I)知b
n=3•2
n-1,
∵f(x)=b
1x+b
2x
2+…+b
nx
n,
∴f′(x)=b
1+2b
2x+…+nb
nx
n-1.
從而f′(1)=b
1+2b
2+…+nb
n=3+2•3•2+3•3•2
2+…+n•3•2
n-1=3(1+2•2+3•2
2+…+n•3•2
n-1)(8分)
設(shè)T
n=1+2•2+3•2
2+…+n•2
n-1,
2T
n=2+2•2
2+3•2
3+…+(n-1)•2
n-1+n•2
n.
兩式相減,得-T
n=1+2+2
2+2
3+…+2
n-1-n•2
n=
.
∴T
n=(n-1)•2
n+1.
∴f′(1)=3(n-1)•2
n+3.(11分)
由于f′(1)-(6n
2-3n)=3[(n-1)•2
n+1-2n
2+n]
=3(n-1)[2
n-(2n+1)].
設(shè)g(n)=f′(1)-(6n
2-3n).
當(dāng)n=1時,g(1)=0,∴f′(1)=6n
2-3n;
當(dāng)n=2時,g(2)=-3<0,∴f′(1)<6n
2-3n;
當(dāng)n≥3時,n-1>0,又2
n=(1+1)
n=C
n+C
n1+…+C
nn-1+C
nn≥2n+2>2n+1,
∴(n-1)[2
n-(2n+1)]>0,即g(n)>0,從而f′(1)>6n
2-3n.(14分)
點(diǎn)評:本題考查數(shù)列的性質(zhì)和應(yīng)用,解題時要注意不等式的合理運(yùn)用.