已知全集U={0,1,2,3,4,5,6},集合A={2,4,5},B={1,3,4,6},則(∁uA)∩B為( 。
A、{0,1,3,6}
B、{0,2,4,6}
C、{0,1,6}
D、{1,3,6}
考點:交、并、補集的混合運算
專題:集合
分析:根據(jù)題意和補集、交集的運算分別求出∁uA、(∁uA)∩B.
解答: 解:因為全集U={0,1,2,3,4,5,6},集合A={2,4,5},
所以∁uA={0,1,3,6},
又B={1,3,4,6},則(∁uA)∩B={1,3,6},
故選:D.
點評:本題考查了交、并、補集的混合運算,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知集合A={(x,y)|2x-y=0},集合B={(x,y)|x-y=3},則集合A∩B是( 。
A、{-6,-3}
B、{(-3,-6)}
C、{3,6}
D、(-3,-6)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知拋物線C的頂點在原點,焦點點為圓x2+y2-2x=0的圓心,
(Ⅰ)求拋物線C的方程;
(Ⅱ)設拋物線C上兩個動點A、B滿足|AF|+BF|=6線段AB的垂直平分線與x軸交于點M;
(1)求點M的坐標;
(2)當線段AB最長時,求△MAB的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)是定義在R上的奇函數(shù),當x≥0時,f(x)=ax-1.其中a>0且a≠1.
(1)求f(2)+f(-2)的值;
(2)求f(x)的解析式;
(3)解關于x的不等式f(x)>0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知平面直角坐標系xoy中,動拋物線c:y=2(x-
3
-3cosθ)2+1+3sinθ(θ任意實數(shù)),以Ox軸為極軸建立極坐標系,直線l的極坐標方程是ρcos(θ+
π
6
)=0.
(1)寫出直線l的直角坐標方程和動拋物線c的頂點的軌跡E的參數(shù)方程;
(2)求直線l被曲線E截得的弦長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,直四棱柱ABCD-A1B1C1D1,底面ABCD為梯形AB∥CD,ABC=90°,BC=CD=2AB=2.
(1)若CC1=2,E為CD1的中點,在側(cè)面ABB1A1內(nèi)是否存在點F,使EF⊥平面ACD1,若存在,請確定點F的位置;若不存在,請說明理由;
(2)令點K為BB1的中點,平面D1AC與平面ACK所成銳二面角為60°,求DD1的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
x
-1
3x
-1
(x<1)
b(x=1)
ax2+2(x>1)

(1)求
lim
x
 
0
f(x);
(2若
lim
x
 
1
f(x)存在,求a,b的值;
(3)若函數(shù)f(x)在x=1處連續(xù),求a,b所滿足的條件.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C1和拋物線C2的焦點均在x軸上,C1的中心和C2的頂點均為原點,從它們每條曲線上至少取兩個點,將其坐標記錄于下表中:
x5-
2
4
2
2
6
2
y2
5
0-4
3
2
-
1
2
(Ⅰ)求C1和C2的方程;
(Ⅱ)過點S(0,-
1
3
)且斜率為k的動直線l交橢圓C1于A、B兩點,在y軸上是否存在定點D,使以線段AB為直徑的圓恒過這個點?若存在,求出D的坐標,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

邊長為2的正三角形ABC中,D,E,M分別是AB,AC,BC的中點,N為DE的中點,將△ADE沿DE折起至A′DE位置,使A′M=
6
2
,設MC的中點為Q,A′B的中點為P,則
①A′N⊥平面BCED    
②NQ∥平面A′EC
③DE⊥平面A′MN
④平面PMN∥平面A′EC
以上結(jié)論正確的是( 。
A、①②④B、②③④
C、①②③D、①③④

查看答案和解析>>

同步練習冊答案