分析 由函數(shù)的最值求出A,由周期求出ω,由五點法作圖求出φ的值,可得f(x)的解析式,再利用三角恒等變換求得g(x)的解析式,再利用正弦函數(shù)的定義域和值域,求得g(x)=f(x)cos2x在區(qū)間[0,$\frac{π}{4}$)的值域
解答 解:函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)圖象相鄰的一個最大值點和一個對稱中心
分別為($\frac{π}{6}$,2),($\frac{5π}{12}$,0),∴A=2,
∴$\frac{T}{4}$=$\frac{1}{4}•\frac{2π}{ω}$=$\frac{5π}{12}$-$\frac{π}{6}$,∴ω=2,∴2•$\frac{π}{6}$+φ=$\frac{π}{2}$,∴φ=$\frac{π}{6}$,f(x)=2sin(2x+$\frac{π}{6}$).
g(x)=f(x)cos2x=2sin(2x+$\frac{π}{6}$)•cos2x=(2sin2x•$\frac{\sqrt{3}}{2}$+2cos2x•$\frac{1}{2}$)•cos2x
=$\frac{\sqrt{3}}{2}$sin4x+$\frac{1+cos4x}{2}$=sin(4x+$\frac{π}{6}$)+$\frac{1}{2}$.
∵在區(qū)間[0,$\frac{π}{4}$)上,4x+$\frac{π}{6}$∈($\frac{π}{6}$,$\frac{7π}{6}$),sin(4x+$\frac{π}{6}$)∈[-$\frac{1}{2}$,1],
則g(x)=f(x)cos2x在區(qū)間[0,$\frac{π}{4}$)的值域為[0,$\frac{3}{2}$],
故答案為:[0,$\frac{3}{2}$].
點評 本題主要考查正弦函數(shù)的圖象和性質(zhì),三角恒等變換,正弦函數(shù)的定義域和值域,屬于中檔題.
科目:高中數(shù)學(xué) 來源:2017屆山東濰坊臨朐縣高三10月月考數(shù)學(xué)(理)試卷(解析版) 題型:解答題
已知函數(shù).
(Ⅰ)若函數(shù)圖象在點處的切線方程為,求的值;
(Ⅱ)求函數(shù)的極值;
(Ⅲ)若,,且對任意的,恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2017屆江西南昌市新課標高三一輪復(fù)習(xí)訓(xùn)練五數(shù)學(xué)試卷(解析版) 題型:選擇題
( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2017屆湖南長沙長郡中學(xué)高三上周測十二數(shù)學(xué)(文)試卷(解析版) 題型:選擇題
函數(shù)的圖象大致為( )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2017屆湖南長沙長郡中學(xué)高三上周測十二數(shù)學(xué)(理)試卷(解析版) 題型:解答題
選修4-5:不等式選講
已知函數(shù).
(1)若,求不等式的解集;
(2)若方程有三個不同的解,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\sqrt{\frac{2-\sqrt{3}}{2}}$ | C. | $\sqrt{\frac{4+\sqrt{3}}{2}}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com