已知函數(shù)f(x)=x4-4x3+ax2+1.
(1)當(dāng)a=4時(shí),求f(x)的單調(diào)區(qū)間和極值;
(2)若對(duì)任意x∈R,f(x)≥2ax-f'(x)恒成立,求a的取值范圍.
解:(1)當(dāng)a=4時(shí),令f′(x)=4x
3-12x
2+8x=0,得x=0或x=1或x=2,
∴由f′(x)>0得出f(x)的單調(diào)增區(qū)間為(0,1),(2,+∞);由f′(x)<0得出f(x)的單調(diào)減區(qū)間為(-∞,0),(1,2).
因此f(x)
極大=f(1)=2,f(x)
極小=f(0)=1,f(x)
極小=f(2)=1.
(2)由f(x)≥2ax-f'(x)恒成立,得x
4-4x
3+ax
2+1≥2ax-(4x
3-12x
2+2ax),
即x
4+(a-12)x
2+1≥0恒成立,∴
或
,
解得a≥10.故a的取值范圍為[10,+∞).
分析:(1)正確求解該函數(shù)的導(dǎo)數(shù)是解決本題的關(guān)鍵,通過(guò)求解函數(shù)的臨界點(diǎn),確定出函數(shù)的單調(diào)區(qū)間的分段點(diǎn),通過(guò)導(dǎo)函數(shù)的正負(fù)確定出函數(shù)的增減區(qū)間進(jìn)而確定出函數(shù)的極值;
(2)將恒成立問(wèn)題進(jìn)行轉(zhuǎn)化與化歸是解決本題的關(guān)鍵.通過(guò)整體思想轉(zhuǎn)化為二次問(wèn)題是解決本題的關(guān)鍵.注意分類討論思想的運(yùn)用,列出關(guān)于字母a的不等式達(dá)到求解本題的目的.
點(diǎn)評(píng):本題考查多項(xiàng)式函數(shù)導(dǎo)數(shù)的求解,考查導(dǎo)數(shù)作為工具求解函數(shù)的極值和最值問(wèn)題,考查學(xué)生的運(yùn)算能力、轉(zhuǎn)化與化歸的思想和方法,考查學(xué)生分析問(wèn)題解決問(wèn)題的能力和意識(shí).