【題目】已知函數(shù),其中.

1)判斷函數(shù)的單調性;

2)設的兩個零點,求證:.

【答案】1在區(qū)間上單調遞減;在區(qū)間上單調遞增(2)證明見解析

【解析】

1)求出函數(shù)的定義域,求導可得,令,可知函數(shù)上單調遞增,又,由此即可函數(shù)的單調性情況;

2)構造函數(shù)的圖象關于直線對稱的曲線為,可得,再分討論即可得證.

1)函數(shù)的定義域為,

,.

,,

,

故函數(shù)上單調遞增,又.

所以當時,,故在區(qū)間上單調遞減;

時,,故在區(qū)間上單調遞增.

2)由(1)知,設,所以,.

設函數(shù)的圖象關于直線對稱的曲線為

圖象上的任意一點,它關于直線的對稱點為,

,

,則有.

1)當時,顯然有;

2)當時,記,

,即

所以當時,

因為,,且函數(shù)在區(qū)間單調遞減,

所以有,得.

綜上所述,.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知點A1,)是離心率為的橢圓Cab0)上的一點,斜率為的直線BD交橢圓CBD兩點,且A、B、D三點不重合

1)求橢圓C的方程;

2)求證:直線AB,AD的斜率之和為定值

3ABD面積是否存在最大值?若存在,求出這個最大值;若不存在,請說明理由?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知動圓過定點,且與定直線相切.

1)求動圓圓心的軌跡的方程;

2)過點的任一條直線與軌跡交于不同的兩點,試探究在軸上是否存在定點(異于點),使得?若存在,求點的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】近一段時間來,由于受非洲豬瘟的影響,各地豬肉價格普遍上漲,生豬供不應求.各大養(yǎng)豬場正面臨巨大挑戰(zhàn).目前各項針對性政策措施對于生豬整體產量恢復、激發(fā)養(yǎng)殖戶積極性的作用正在逐步顯現(xiàn).現(xiàn)有甲、乙兩個規(guī)模一致的大型養(yǎng)豬場,均養(yǎng)有1萬頭豬,將其中重量(kg)在內的豬分為三個成長階段如下表.

豬生長的三個階段

階段

幼年期

成長期

成年期

重量(Kg

根據(jù)以往經驗,兩個養(yǎng)豬場豬的體重X均近似服從正態(tài)分布.由于我國有關部門加強對大型養(yǎng)豬場即將投放市場的成年期豬的監(jiān)控力度,高度重視成年期豬的質量保證,為了養(yǎng)出健康的成年活豬,甲、乙兩養(yǎng)豬場引入兩種不同的防控及養(yǎng)殖模式.已知甲、乙兩個養(yǎng)豬場內一頭成年期豬能通過質檢合格的概率分別為,.

1)試估算甲養(yǎng)豬場三個階段豬的數(shù)量;

2)已知甲養(yǎng)豬場出售一頭成年期的豬,若為健康合格的豬,則可盈利600元,若為不合格的豬,則虧損100元;乙養(yǎng)豬場出售一頭成年期的豬,若為健康合格的豬,則可盈利500元,若為不合格的豬,則虧損200.

(ⅰ)記Y為甲、乙養(yǎng)豬場各出售一頭成年期豬所得的總利潤,求隨機變量Y的分布列;

(ⅱ)假設兩養(yǎng)豬場均能把成年期豬售完,求兩養(yǎng)豬場的總利潤期望值.

(參考數(shù)據(jù):若,,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中國古代數(shù)學家劉徽在《九章算術注》中記述:羨除,隧道也,其所穿地,上平下邪.如圖所示的五面體是一個羨除,兩個梯形側面相互垂直,.,,,梯形的高分別為31,則該羨除的體積

A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國古代有著輝煌的數(shù)學研究成果,其中《周髀算經》、《九章算術》、《海島算經》、《孫子算經》、《緝古算經》有著豐富多彩的內容,是了解我國古代數(shù)學的重要文獻.5部專著中有3部產生于漢、魏、晉、南北朝時期.現(xiàn)擬從這5部專著中選擇2部作為學生課外興趣拓展參考書目,則所選2部專著中至少有一部不是漢、魏、晉、南北朝時期專著的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)=x|xa|,aR.

1)當f2+f(﹣2)>4時,求a的取值范圍;

2)若a0x,y∈(﹣,a],不等式fx≤|y+3|+|ya|恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知某運動員每次投籃命中的概率都為40%.現(xiàn)采用隨機模擬的方法估計該運動員三次投籃恰有兩次命中的概率:先由計算器算出09之間取整數(shù)值的隨機數(shù),指定1,23,4表示命中,5,6,7,8,90表示不命中;再以每三個隨機數(shù)為一組,代表三次投籃的結果.經隨機模擬產生了20組隨機數(shù):

907 966 191 925 271 932 812 458 569 683

431 257 393 027 556 488 730 113 537 989

據(jù)此估計,該運動員三次投籃恰有兩次命中的概率為(

A.0.35B.0.25C.0.20D.0.15

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)既是二次函數(shù)又是冪函數(shù),函數(shù)gx)是R上的奇函數(shù),函數(shù)=+1,則h(2018)+h(2017)+h(2016)+…+h(1)+h(0)+h(﹣1)+…h(﹣2016)+h(﹣2017)+h(﹣2018)=___________

查看答案和解析>>

同步練習冊答案