【題目】已知函數(shù)f(x)=x2axb , g(x)=ex(cxd),若曲線yf(x)和曲線yg(x)都過點(diǎn)P(0,2),且在點(diǎn)P處有相同的切線y=4x+2.
(1)求ab , cd的值;
(2)若x≥-2時(shí),恒有f(x)≤kg(x),求k的取值范圍.

【答案】
(1)解:根據(jù)題意 ,因?yàn)閒(x)=2x+a,g(x)=ex(cx+2)+cex,則由導(dǎo)數(shù)的幾何意義可知 ,所以 =2.

(2)解:由(1)知, ,

設(shè)函數(shù) ,

由題設(shè)可得 ,即 ,

①若 ,則 ,∴當(dāng) 時(shí),

,當(dāng) 時(shí), ,即F(x)在 單調(diào)遞減,在 單調(diào)遞增,故 取最小值 ,

∴當(dāng) 時(shí), ,即 恒成立.

②若 ,則

∴當(dāng) 時(shí), ,∴ 單調(diào)遞增,

,∴當(dāng) 時(shí), ,即 恒成立,

③若 ,則 ,

∴當(dāng) 時(shí), 不可能恒成立.

綜上所述, 的取值范圍為


【解析】(1)根據(jù)題意f(0)=2,g(0)=2,根據(jù)導(dǎo)數(shù)的幾何意義可知f(0)=4,g(0)=4,從而可求得a,b,c,d的值;(2)構(gòu)造函數(shù) F(x)=kg(x)-f(x) ,若x≥-2時(shí),恒有f(x)≤kg(x),即證 x ≥ 2 時(shí)恒有 F ( x ) ≥ 0 .先將函數(shù) F(x)=kg(x)-f(x)求導(dǎo),討論導(dǎo)數(shù)的正負(fù)得函數(shù)的增減區(qū)間,根據(jù)函數(shù)的單調(diào)性求其最值.使其最小值大于等于0即可.
【考點(diǎn)精析】利用導(dǎo)數(shù)的幾何意義和函數(shù)的最大(小)值與導(dǎo)數(shù)對(duì)題目進(jìn)行判斷即可得到答案,需要熟知通過圖像,我們可以看出當(dāng)點(diǎn)趨近于時(shí),直線與曲線相切.容易知道,割線的斜率是,當(dāng)點(diǎn)趨近于時(shí),函數(shù)處的導(dǎo)數(shù)就是切線PT的斜率k,即;求函數(shù)上的最大值與最小值的步驟:(1)求函數(shù)內(nèi)的極值;(2)將函數(shù)的各極值與端點(diǎn)處的函數(shù)值比較,其中最大的是一個(gè)最大值,最小的是最小值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖:四棱錐P﹣ABCD中,PD=PC,底面ABCD是直角梯形AB⊥BC,AB∥CD,CD=2AB,點(diǎn)M是CD的中點(diǎn).

(1)求證:AM∥平面PBC;
(2)求證:CD⊥PA.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知點(diǎn)

)若 是正方形一條邊上的兩個(gè)頂點(diǎn),求這個(gè)正方形過頂點(diǎn)的兩條邊所在直線的方程;

)若, 是正方形一條對(duì)角線上的兩個(gè)頂點(diǎn),求這個(gè)正方形另外一條對(duì)角線所在直線的方程及其端點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在無窮數(shù)列中, ,對(duì)于任意,都有 ,設(shè),記使得成立的的最大值為

)設(shè)數(shù)列, , , ,寫出 , 的值.

)若為等比例數(shù)列,且,求的值.

)若為等差數(shù)列,求出所有可能的數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場(chǎng)舉行有獎(jiǎng)促銷活動(dòng),顧客購(gòu)買一定金額商品后即可抽獎(jiǎng),每次抽獎(jiǎng)都從裝有4個(gè)紅球、6個(gè)白球的甲箱和裝有5個(gè)紅球、5個(gè)白球的乙箱中,各隨機(jī)摸出1個(gè)球,在摸出的2個(gè)球中,若都是紅球,則獲一等獎(jiǎng);若只有1個(gè)紅球,則獲二等獎(jiǎng);若沒有紅球,則不獲獎(jiǎng).
(1)求顧客抽獎(jiǎng)1次能獲獎(jiǎng)的概率;
(2)若某顧客有3次抽獎(jiǎng)機(jī)會(huì),記該顧客在3次抽獎(jiǎng)中獲一等獎(jiǎng)的次數(shù)為x,求x的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C:(x-3)2+(y-4)2=1,設(shè)點(diǎn)P是圓C上的動(dòng)點(diǎn).記d=|PB|2+|PA|2,其中A(0,1),B(0,-1),則d的取值范圍為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】銳角三角形中, , ,則面積的取值范圍為( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|x+a|-|x-1|.
(Ⅰ)當(dāng)a=-2時(shí),求不等式 的解集;
(Ⅱ)若f(x)≥2有解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC,E是PC的中點(diǎn),

(1)證明:PA∥平面EDB

(2)證明:平面BDE平面PCB

查看答案和解析>>

同步練習(xí)冊(cè)答案