【題目】在平面直角坐標(biāo)系中,已知點(diǎn)和.
()若, 是正方形一條邊上的兩個(gè)頂點(diǎn),求這個(gè)正方形過(guò)頂點(diǎn)的兩條邊所在直線(xiàn)的方程;
()若, 是正方形一條對(duì)角線(xiàn)上的兩個(gè)頂點(diǎn),求這個(gè)正方形另外一條對(duì)角線(xiàn)所在直線(xiàn)的方程及其端點(diǎn)的坐標(biāo).
【答案】()和;()另外一條對(duì)角線(xiàn)為,端點(diǎn)為和.
【解析】試題分析:(1)根據(jù)斜率公式可得, ,與直線(xiàn)垂直的直線(xiàn)斜率, ,整理成一般式即可;(2)設(shè)另外兩個(gè)端點(diǎn)坐標(biāo)分別為, ,根據(jù)在直線(xiàn)上,且,列方程組求解即可.
試題解析:( )∵, ,
, ,
與直線(xiàn)垂直的直線(xiàn)斜率, ,
整理得所求兩條直線(xiàn)為和.
()∵直線(xiàn)方程為: ,
另外一條對(duì)角線(xiàn)斜率,
設(shè)中點(diǎn)為,則另一條對(duì)角線(xiàn)過(guò)點(diǎn),
∴,整理得,
設(shè)另外兩個(gè)端點(diǎn)坐標(biāo)分別為, ,
∵在直線(xiàn)上,
∴,①
且,
∴,②
聯(lián)立①②解出或,
即另外兩個(gè)端點(diǎn)為與.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)命題p:實(shí)數(shù)x滿(mǎn)足(x﹣a)(x﹣3a)<0,其中a>0,命題q:實(shí)數(shù)x滿(mǎn)足 2<x≤3.
(1)若a=1,有p且q為真,求實(shí)數(shù)x的取值范圍.
(2)若p是q的充分不必要條件,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓 =1(a>b>0)右頂點(diǎn)與右焦點(diǎn)的距離為 ﹣1,短軸長(zhǎng)為2 . (Ⅰ)求橢圓的方程;
(Ⅱ)過(guò)左焦點(diǎn)F的直線(xiàn)與橢圓分別交于A(yíng)、B兩點(diǎn),若△OAB(O為直角坐標(biāo)原點(diǎn))的面積為 ,求直線(xiàn)AB的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓 +y2=1(a>1),過(guò)直線(xiàn)l:x=2上一點(diǎn)P作橢圓的切線(xiàn),切點(diǎn)為A,當(dāng)P點(diǎn)在x軸上時(shí),切線(xiàn)PA的斜率為± . (Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)O為坐標(biāo)原點(diǎn),求△POA面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線(xiàn)系方程(其中為參數(shù)).當(dāng)時(shí),直線(xiàn)與兩坐標(biāo)軸所圍成的三角形的面積為__________,若該直線(xiàn)系中的三條直線(xiàn)圍成正三角形區(qū)域,則區(qū)域的面積為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是等差數(shù)列,滿(mǎn)足, ,數(shù)列滿(mǎn)足, ,且是等比數(shù)列.
(1)求數(shù)列和的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4﹣1:幾何證明選講
如圖,⊙O和⊙O′相交于A(yíng),B兩點(diǎn),過(guò)A作兩圓的切線(xiàn)分別交兩圓于C、D兩點(diǎn),連接DB并延長(zhǎng)交⊙O于點(diǎn)E.證明:
(1)ACBD=ADAB;
(2)AC=AE.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x2+ax+b , g(x)=ex(cx+d),若曲線(xiàn)y=f(x)和曲線(xiàn)y=g(x)都過(guò)點(diǎn)P(0,2),且在點(diǎn)P處有相同的切線(xiàn)y=4x+2.
(1)求a , b , c , d的值;
(2)若x≥-2時(shí),恒有f(x)≤kg(x),求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在2015﹣2016賽季CBA聯(lián)賽中,某隊(duì)甲、乙兩名球員在前10場(chǎng)比賽中投籃命中情況統(tǒng)計(jì)如下表(注:表中分?jǐn)?shù) ,N表示投籃次數(shù),n表示命中次數(shù)),假設(shè)各場(chǎng)比賽相互獨(dú)立.
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
甲 | ||||||||||
乙 |
根據(jù)統(tǒng)計(jì)表的信息:
(1)從上述比賽中等可能隨機(jī)選擇一場(chǎng),求甲球員在該場(chǎng)比賽中投籃命中率大于0.5的概率;
(2)試估計(jì)甲、乙兩名運(yùn)動(dòng)員在下一場(chǎng)比賽中恰有一人命中率超過(guò)0.5的概率;
(3)在接下來(lái)的3場(chǎng)比賽中,用X表示這3場(chǎng)比賽中乙球員命中率超過(guò)0.5的場(chǎng)次,試寫(xiě)出X的分布列,并求X的數(shù)學(xué)期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com