15.函數(shù)f(x)=x3-3x2+1的單調(diào)遞減區(qū)間是( 。
A.(2,+∞)B.(-∞,2)C.(-∞,0)D.(0,2)

分析 求出函數(shù)的導(dǎo)數(shù),令f′(x)<0,解出即可.

解答 解:f′(x)=3x2-6x,
令f′(x)<0,
解得:0<x<2,
故函數(shù)的遞減區(qū)間是(0,2),
故選:D.

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.在正方體ABCD-A1B1C1D1中,P為正方形A1B1C1D1四邊上的動(dòng)點(diǎn),O為底面正方形ABCD的中心,M,N分別為AB,BC的中點(diǎn),點(diǎn)Q為平面ABCD內(nèi)一點(diǎn),線段D1Q與OP互相平分,則滿(mǎn)足$\overrightarrow{MQ}$=λ$\overrightarrow{MN}$的實(shí)數(shù)λ有2個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.直線ax+y+3a-1=0恒過(guò)定點(diǎn)M,則直線2x+3y-6=0關(guān)于M點(diǎn)對(duì)稱(chēng)的直線方程為( 。
A.2x+3y-12=0B.2x+3y+12=0C.2x-3y+12=0D.2x-3y-12=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=|2x-a|+|2x+3|,g(x)=|x-1|+2.
(1)解不等式g(x)<|x-2|+2;
(2)若對(duì)任意x1∈R都有x2∈R,使得f(x1)=g(x2)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知x,y滿(mǎn)足$\left\{{\begin{array}{l}{x+y≤4}\\{x-y≥0}\\{x≥0}\end{array}}\right.$,若目標(biāo)函數(shù)z=x+2y的最大值為n,則${(x-\frac{2}{{\sqrt{x}}})^n}$的常數(shù)項(xiàng)為( 。
A.240B.-240C.60D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知數(shù)列{an}通項(xiàng)公式為an=$\frac{1}{n(n+1)}$,其前m項(xiàng)和為$\frac{9}{10}$,則雙曲線$\frac{x^2}{m+1}-\frac{y^2}{m}$=1的漸近線方程是( 。
A.y=±$\frac{9}{10}$xB.y=±$\frac{10}{9}$xC.y=±$\frac{{3\sqrt{10}}}{10}$xD.y=±$\frac{{\sqrt{10}}}{3}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知p:“?k∈R,直線y=kx+1與橢圓x2+$\frac{y^2}{a}$=1有兩個(gè)不同的公共點(diǎn)”;q:“?x0∈R,不等式4x0-2x0-a≤0成立”;若“p且q”是假命題,“p或q”是真命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知α為第二象限角,則$\frac{α}{2}$所在的象限是( 。
A.第一或第二象限B.第二或第三象限C.第一或第三象限D.第二或第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知數(shù)列{an}滿(mǎn)足a1=2,點(diǎn)(an,an+1)在直線y=3x+2上,數(shù)列{bn}滿(mǎn)足b1=2,$\frac{_{n+1}}{{a}_{n+1}}$=$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n}}$
(1)求b2的值;
(2)求證數(shù)列{an+1}為等比數(shù)列,并求出數(shù)列{an}的通項(xiàng)公式;
(3)求證:2-$\frac{1}{2•{3}^{n-1}}$≤(1+$\frac{1}{_{1}}$)(1+$\frac{1}{_{2}}$)…(1+$\frac{1}{_{n}}$)<$\frac{33}{16}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案