【題目】已知直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的非負(fù)半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為,直線與圓交于, 兩點(diǎn).
(1)求圓的直角坐標(biāo)方程及弦的長;
(2)動點(diǎn)在圓上(不與, 重合),試求的面積的最大值.
【答案】(1) ;(2).
【解析】試題分析:(1)利用平面直角坐標(biāo)系與極坐標(biāo)系間的轉(zhuǎn)化關(guān)系,可得圓的直角坐標(biāo)方程,將直線的參數(shù)方程代入,利用參數(shù)的幾何意義可求得弦的長;(2)寫出圓的參數(shù)方程,利用點(diǎn)到直線的距離公式,可得,可求出的最大值,即求得的面積的最大值.
試題分析:(1)由得,所以,所以圓的直角坐標(biāo)方程為.將直線的參數(shù)方程代入圓 ,并整理得,解得, .所以直線被圓截得的弦長為.
(2)直線的普通方程為.圓的參數(shù)方程為(為參數(shù)),
可設(shè)曲線上的動點(diǎn),則點(diǎn)到直線的距離 ,當(dāng)時, 取最大值,且的最大值為.
所以,即的面積的最大值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ)(其中A>0,ω>0,|φ|< )的部分圖象如圖所示.
(1)求函數(shù)y=f(x)的解析式;
(2)求函數(shù)y=f(x)的單調(diào)增區(qū)間;
(3)求方程f(x)=0的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 , ,且 ,f(x)= ﹣2λ| |(λ為常數(shù)),求:
(1) 及| |;
(2)若f(x)的最小值是 ,求實(shí)數(shù)λ的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)在圓: 上,而為在軸上的投影,且點(diǎn)滿足,設(shè)動點(diǎn)的軌跡為曲線.
(1)求曲線的方程;
(2)若是曲線上兩點(diǎn),且, 為坐標(biāo)原點(diǎn),求的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】渝州集團(tuán)對所有員工進(jìn)行了職業(yè)技能測試從甲、乙兩部門中各任選10名員工的測試成績(單位:分)數(shù)據(jù)的莖葉圖如圖所示.
(1)若公司決定測試成績高于85分的員工獲得“職業(yè)技能好能手”稱號,求從這20名員工中任選三人,其中恰有兩人獲得“職業(yè)技能好能手”的概率;
(2)公司結(jié)合這次測試成績對員工的績效獎金進(jìn)行調(diào)整(績效獎金方案如下表),若以甲部門這10人的樣本數(shù)據(jù)來估計(jì)該部門總體數(shù)據(jù),且以頻率估計(jì)概率,從甲部門所有員工中任選3名員工,記績效獎金不小于的人數(shù)為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是某社區(qū)工會對當(dāng)?shù)仄髽I(yè)工人月收入情況進(jìn)行一次抽樣調(diào)查后畫出的頻率分布直方圖,其中第二組月收入在[1.5,2)千元的頻數(shù)為300,則此次抽樣的樣本容量為( )
A.1000
B.2000
C.3000
D.4000
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】10名同學(xué)參加投籃比賽,每人投20球,投中的次數(shù)用莖葉圖表示(如圖),設(shè)其平均數(shù)為a,中位數(shù)為b,眾數(shù)為c,則有( )
A.a>b>c
B.b>c>a
C.c>a>b
D.c>b>a
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某印刷廠為了研究印刷單冊書籍的成本y(單位:元)與印刷冊數(shù)x(單位:千冊)之間的關(guān)系,在印制某種書籍時進(jìn)行了統(tǒng)計(jì),相關(guān)數(shù)據(jù)見下表:
根據(jù)以上數(shù)據(jù),技術(shù)人員分別借助甲、乙兩種不同的回歸模型,得到了兩個回歸方程,甲:
為了評價兩種模型的擬合效果,完成以下任務(wù):
(1)(。┩瓿上卤恚ㄓ(jì)算結(jié)果精確到0.1):
(ⅱ)分別計(jì)算模型甲與模型乙的殘差平方和及,并通過比較,的大小,判斷哪個模型擬合效果更好.
(2)該書上市后,受到廣大讀者的熱烈歡迎,不久便全部售罄,于是印刷廠決定進(jìn)行二次印刷,根據(jù)市場調(diào)查,新需求量為8千冊(概率為0.8)或10千冊(概率為0.2),若印刷廠以沒測5元的價格將書籍出售給訂貨商,問印刷廠二次印刷8千冊還是10千冊恒獲得更多的利潤?(按(1)中擬合效果較好的模型計(jì)算印刷單冊書的成本)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在上是減函數(shù),在上是增函數(shù),函數(shù)在上有三個零點(diǎn).
(1)求的值;
(2)若1是其中一個零點(diǎn),求的取值范圍;
(3)若,試問過點(diǎn)(2,5)可作多少條直線與曲線y=g(x)相切?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com