精英家教網 > 高中數學 > 題目詳情

【題目】10名同學參加投籃比賽,每人投20球,投中的次數用莖葉圖表示(如圖),設其平均數為a,中位數為b,眾數為c,則有(

A.a>b>c
B.b>c>a
C.c>a>b
D.c>b>a

【答案】D
【解析】解:根據莖葉圖中的數據,得:該組數據的平均數為a= ×(9+9+12+15+16+17+17+17+18+20)=15,
中位數為b= =16.5,
眾數為c=17,
所以a<b<c.
故選:D.
【考點精析】解答此題的關鍵在于理解莖葉圖的相關知識,掌握莖葉圖又稱“枝葉圖”,它的思路是將數組中的數按位數進行比較,將數的大小基本不變或變化不大的位作為一個主干(莖),將變化大的位的數作為分枝(葉),列在主干的后面,這樣就可以清楚地看到每個主干后面的幾個數,每個數具體是多少.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某校100名學生期中考試語文成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間是:,,,

(Ⅰ)求圖中的值;

(Ⅱ)根據頻率分布直方圖,估計這100名學生語文成績的平均分;

(Ⅲ)若這100名學生語文成績某些分數段的人數()與數學成績相應分數段的人數()之比如表所示,求數學成績在之外的人數.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某校高二年級進行了百科知識大賽,為了了解高二年級900名同學的比賽情況,現在甲、乙兩個班級各隨機抽取了10名同學的成績,比賽成績滿分為100分,80分以上可獲得二等獎,90分以上可以獲得一等獎,已知抽取的兩個班學生的成績(單位:分)數據的莖葉圖如圖1所示:

(1)比較兩組數據的分散程度(只需要給出結論),并求出甲組數據的頻率分布直方圖如圖2中所示的值;

(2)現從兩組數據中獲獎的學生里分別隨機抽取一人接受采訪,求被抽中的甲班學生成績高于乙班學生成績的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知直線的參數方程為為參數),以坐標原點為極點, 軸的非負半軸為極軸建立極坐標系,圓的極坐標方程為,直線與圓交于 兩點.

(1)求圓的直角坐標方程及弦的長;

(2)動點在圓上(不與, 重合),試求的面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】以下四個命題中:
①為了了解800名學生對學校某項教改試驗的意見,打算從中抽取一個容量為40的樣本,考慮用系統(tǒng)抽樣,則分段的間隔k為40.
②線性回歸直線方程 恒過樣本中心( , ),且至少過一個樣本點;
③在某項測量中,測量結果ξ服從正態(tài)分布N(2,σ2)(σ>0).若ξ在(﹣∞,1)內取值的概率為0.1,則ξ在(2,3)內取值的概率為0.4;
其中真命題的個數為(
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知經銷某種商品的電商在任何一個銷售季度內,每售出噸該商品可獲利潤萬元,未售出的商品,每噸虧損萬元.根據往年的銷售經驗,得到一個銷售季度內市場需求量的頻率分布直方圖如右圖所示.已知電商為下一個銷售季度籌備了噸該商品.現以(單位:噸, )表示下一個銷售季度的市場需求量, (單位:萬元)表示該電商下一個銷售季度內經銷該商品獲得的利潤.

(Ⅰ)根據頻率分布直方圖,估計一個銷售季度內市場需求量的平均數與中位數的大。

(Ⅱ)根據直方圖估計利潤不少于57萬元的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線的焦點為,直線與拋物線交于兩點.

(Ⅰ)若直線過焦點,且與圓交于(其中軸同側),求證: 是定值;

(Ⅱ)設拋物線點的切線交于點,試問: 軸上是否存在點,使得為菱形?若存在,請說明理由并求此時直線的斜率和點的坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】函數f(x)= +lg(2x+1)的定義域為(
A.(﹣5,+∞)
B.[﹣5,+∞)
C.(﹣5,0)
D.(﹣2,0)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】函數y= 的定義域為(
A.{x|x≥1}
B.{x|x≥1或x=0}
C.{x|x≥0}
D.{x|x=0}

查看答案和解析>>

同步練習冊答案