分析 (1)由題意知$\frac{y}{x+\sqrt{3}}•\frac{y}{x-\sqrt{3}}=-\frac{2}{3}$(x$≠±\sqrt{3}$),可求P的軌跡方程;
(2)設(shè)直線MN的方程為x=my+t,代入橢圓方程$\frac{{x}^{2}}{3}+\frac{{y}^{2}}{2}=1$,利用kOMkON=$\frac{2{t}^{2}-6}{3{t}^{2}-6{m}^{2}}$=-$\frac{2}{3}$,得2t2=2m2+3,即可證明結(jié)論.
解答 (1)解:由已知設(shè)點P的坐標(biāo)為(x,y),由題意知$\frac{y}{x+\sqrt{3}}•\frac{y}{x-\sqrt{3}}=-\frac{2}{3}$(x$≠±\sqrt{3}$),
化簡得P的軌跡方程為$\frac{{x}^{2}}{3}+\frac{{y}^{2}}{2}=1$(x$≠±\sqrt{3}$)…(5分)
(2)證明:由題意M,N是橢圓C上非頂點的兩點,且AP∥OM,BP∥ON,
則直線AP,BP斜率必存在且不為0,又由已知kAPkBP=-$\frac{2}{3}$.
因為AP∥OM,BP∥ON,所以kOMkON=-$\frac{2}{3}$…(6分)
設(shè)直線MN的方程為x=my+t,代入橢圓方程$\frac{{x}^{2}}{3}+\frac{{y}^{2}}{2}=1$,得(3+2m2)y2+4mty+2t2-6=0…①,…(7分)
設(shè)M,N的坐標(biāo)分別為M(x1,y1),N(x2,y2),則y1+y2=-$\frac{4mt}{3+2{m}^{2}}$,y1y2=$\frac{2{t}^{2}-6}{3+2{m}^{2}}$…(8分)
所以kOMkON=$\frac{2{t}^{2}-6}{3{t}^{2}-6{m}^{2}}$=-$\frac{2}{3}$,得2t2=2m2+3…(10分)
又S△MON=$\frac{1}{2}$|t||y1-y2|=$\frac{2\sqrt{6}|t|\sqrt{{t}^{2}}}{4{t}^{2}}$=$\frac{\sqrt{6}}{2}$,
即△MON的面積為定值$\frac{\sqrt{6}}{2}$…(12分)
點評 本題考查軌跡方程,考查直線與橢圓的位置關(guān)系,考查斜率、面積的計算,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2a-1 | B. | 2-a-1 | C. | 1-2-a | D. | 1-2a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 45 | B. | 51 | C. | 53 | D. | 61 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com