【題目】已知拋物線的方程為,直線過定點P(2,0),斜率為。當為何值時,直線與拋物線:

(1)只有一個公共點;

(2)有兩個公共點;

(3)沒有公共點。

【答案】(1)(2)(3)

【解析】

由題意可設直線方程為:ykx2),聯(lián)立方程可得,整理可得k2x24k21x+4k20*

1)直線與拋物線只有一個公共點*)只有一個根

2)直線與拋物線有2個公共點*)有兩個根

3)直線與拋物線沒有一個公共點*)沒有根

由題意可設直線方程為:ykx2),

聯(lián)立方程可得,整理可得k2x24k21x+4k20*

1)直線與拋物線只有一個公共點*)沒有根

k0時,x0符合題意

k≠0時,16k21216k40

綜上可得,,或0,

2)直線與拋物線有2個公共點*)有兩個根

3)直線與拋物線沒有一個公共點*)沒有根

解不等式可得,kk,

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù);

討論的極值點的個數(shù);

,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐PABCD中,側面PAD是正三角形,底面ABCD是菱形,且∠ABC=60°,M為PC的中點.

(1)求證:PC⊥AD.

(2)在棱PB上是否存在一點Q,使得A,Q,M,D四點共面?若存在,指出點Q的位置并證明;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐PABCD中,PA⊥平面ABCD,底面ABCD是菱形,點O是對角線ACBD的交點,MPD的中點.

1)求證:OM∥平面PAB

2)求證:平面PBD⊥平面PAC

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直三棱柱中,,點為棱的中點,點為線段上一動點.

(Ⅰ)求證:當點為線段的中點時,平面;

(Ⅱ)設,試問:是否存在實數(shù),使得平面與平面所成銳二面角的余弦值為?若存在,求出這個實數(shù);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國南北朝數(shù)學家何承天發(fā)明的調日法是程序化尋求精確分數(shù)來表示數(shù)值的算法,其理論依據(jù)是:設實數(shù)的不足近似值和過剩近似值分別為,則的更為精確的近似值.

我們知道,我國早在《周髀算經(jīng)》中就有周三徑一的古率記載,《隋書律歷志》有如下記載:南徐州從事史祖沖之更開密法,以圓徑一億為丈,圓周盈數(shù)三丈一尺四寸一分五厘九毫二秒七忽,肭數(shù)三丈一尺四寸一分五厘九毫二秒六忽,正數(shù)在盈肭二限之間。密率:圓徑一百一十三,圓周三百五十五。約率,圓徑七,周二十二,這一記錄指出了祖沖之關于圓周率的兩大貢獻:其一是求得圓周率;其二是得到的兩個近似分數(shù)即:約率為22/7,密率為355/113,他算出的8位可靠數(shù)字,不但在當時是最精密的圓周率,而且保持世界紀錄一千多年,他對的研究真可謂運籌于帷幄之中,決勝于千年之外,祖沖之是我國古代最有影響的數(shù)學家之一,莫斯科大學走廊里有其塑像,195910月,原蘇聯(lián)通過月球3”號衛(wèi)星首次拍下月球背面照片后,就以祖沖之命名一個環(huán)形山,其月面坐標是:東經(jīng)148度,北緯17.

縱橫古今,關于值的研究,經(jīng)歷了古代試驗法時期、幾何法時期、分析法時期、蒲豐或然性試驗方法時期、計算機時期,己知,試以上述的不足近似值和過剩近似值為依據(jù),那么使用兩次調日法后可得的近似分數(shù)為____________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】國家放開計劃生育政策,鼓勵一對夫婦生育2個孩子.在某地區(qū)的100000對已經(jīng)生育了一胎夫婦中,進行大數(shù)據(jù)統(tǒng)計得,有100對第一胎生育的是雙胞胎或多胞胎,其余的均為單胞胎.在這99900對恰好生育一孩的夫婦中,男方、女方都愿意生育二孩的有50000對,男方愿意生育二孩女方不愿意生育二孩的有對,男方不愿意生育二孩女方愿意生育二孩的有對,其余情形有對,且.現(xiàn)用樣本的頻率來估計總體的概率.

(1)說明“其余情形”指何種具體情形,并求出,的值;

(2)該地區(qū)為進一步鼓勵生育二孩,實行貼補政策:凡第一胎生育了一孩的夫婦一次性貼補5000元,第一胎生育了雙胞胎或多胞胎的夫婦只有一次性貼補15000元.第一胎已經(jīng)生育了一孩再生育了二孩的夫婦一次性再貼補20000元.這種補貼政策直接提高了夫婦生育二孩的積極性:原先男方或女方中只有一方愿意生育二孩的夫婦現(xiàn)在都愿意生育二孩,但原先男方、女方都不愿意生育二孩的夫婦仍然不愿意生育二孩.設為該地區(qū)的一對夫婦享受的生育貼補,求

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】國慶期間,一位游客來到某旅游城市,這里有甲、乙、丙三個著名的旅游景點,若這位游客游覽這三個景點的概率分別是,且客人是否游覽哪個景點互不影響,設表示客人離開該城市時游覽的景點數(shù)與沒有游覽的景點數(shù)之差的絕對值.

(Ⅰ)求的分布列和數(shù)學期望;

(Ⅱ)記“時,不等式恒成立”為事件,求事件發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了進一步提升基層黨員自身理論素養(yǎng),市委組織部舉辦了黨建主題知識競賽(滿分120分),從參加競賽的黨員中采用分層抽樣的方法抽取若干名黨員,統(tǒng)計他們的競賽成績得到下面頻率分布表:

成績/分

頻率

0.1

0.3

0.3

0.2

0.1

已知成績在區(qū)間內(nèi)的有人.

(1)將成績在內(nèi)的定義為“優(yōu)秀”,在內(nèi)的定義為“良好”,請將列聯(lián)表補充完整.

男黨員

女黨員

合計

優(yōu)秀

良好

15

合計

25

(2)判斷是否有的把握認為競賽成績是否優(yōu)秀與性別有關?

(3)若在抽取的競賽成績?yōu)閮?yōu)秀的黨員中任意抽取2人進行黨建知識宣講,求被抽取的這兩人成績都在內(nèi)的概率.

附:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

同步練習冊答案