(滿分12分)如圖,在平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn),點(diǎn),
且點(diǎn)軸上動(dòng)點(diǎn),過點(diǎn)作線段
垂線交軸于點(diǎn),在直線上取點(diǎn),使
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)點(diǎn)是直線上的一個(gè)動(dòng)點(diǎn),
過點(diǎn)作軌跡的兩條切線切點(diǎn)分別為,
求證:
(1)設(shè)動(dòng)點(diǎn),,,,
直線的方程為
    ,,點(diǎn)的軌跡的方程是
(2)設(shè),,。

同理,是方程的兩個(gè)根,
 ,
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(2001高考江西、山西、天津)設(shè)坐標(biāo)原點(diǎn)為O,拋物線y2=2x與過焦點(diǎn)的直線交于A、B兩點(diǎn),則等于(   )
A.B.-C.3D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

條件:(1)截軸弦長(zhǎng)為2.(2)被軸分成兩段圓弧,其弧長(zhǎng)之比為3:1在滿足(1)(2)的所有圓中,求圓心到直線距離最小時(shí)圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題





查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

(原創(chuàng)題)
已知是曲線上一點(diǎn),是該曲線的兩個(gè)焦點(diǎn),若內(nèi)角平分線的交點(diǎn)到三邊上的距離為1,,則的值為   
A.B.C.-D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分13分)已知兩點(diǎn)且點(diǎn)P使成等差數(shù)列.(1)若P點(diǎn)的軌跡曲線為C,求曲線C的方程;
(2)從定點(diǎn)出發(fā)向曲線C引兩條切線,求兩切線方程和切點(diǎn)連線的直線方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若直線與圓沒有公共點(diǎn),則以(m,n)為點(diǎn)P的坐標(biāo),過點(diǎn)P的一條直線與橢圓的公共點(diǎn)有_________個(gè)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知拋物線和雙曲線都經(jīng)過點(diǎn),它們?cè)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823120307880187.gif" style="vertical-align:middle;" />軸上有共同焦點(diǎn),拋物線的頂點(diǎn)為坐標(biāo)原點(diǎn),則雙曲線的標(biāo)準(zhǔn)方程是                .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(江蘇省泰興市2007—2008學(xué)年第一學(xué)期高三調(diào)研)已知過點(diǎn)A(0,1),且方向向量為,相交于M、N兩點(diǎn).
(1)求實(shí)數(shù)的取值范圍; 
(2)求證:;
(3)若O為坐標(biāo)原點(diǎn),且.

查看答案和解析>>

同步練習(xí)冊(cè)答案