A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 結(jié)合圖形,逐項(xiàng)分析,得出正確的選項(xiàng).
解答 解:(1)連結(jié)MC,MD,由三角形三線合一可得AB⊥CM,AB⊥DM,∴AB⊥平面MCD,
∵M(jìn)N?平面MCD,∴AB⊥MN,故(1)正確;
(2)取BD中點(diǎn)E,連結(jié)ME,NE,則∠NME為MN與AD所成角,
連結(jié)BN,由(1)知BM⊥MN,設(shè)正四面體棱長(zhǎng)為1,則BM=$\frac{1}{2}$,BN=$\frac{\sqrt{3}}{2}$,∴MN=$\frac{\sqrt{2}}{2}$,
ME=NE=$\frac{1}{2}$,∴cos∠NME=$\frac{M{N}^{2}+M{E}^{2}-N{E}^{2}}{2MN•ME}$=$\frac{\sqrt{2}}{2}$,∴∠NME=45°,故(2)不正確;
(3)由(1)知AB⊥平面CDM,∵AB?平面ABN,∴平面CDM⊥平面ABN,故(3)正確;
(4)取BC早點(diǎn)F,連結(jié)MF,DF,假設(shè)存在點(diǎn)N,使得過(guò)MN的平面與AC垂直,
∴AC⊥MN,∵M(jìn)F∥AC,∴MF⊥MN,
∵DF=DM=$\frac{\sqrt{3}}{2}$,∴∠FMD<90°,同理,∠CMF<90°.
當(dāng)N從D向C移動(dòng)時(shí),∠FMN先減小,后增大,故∠FMN<90°,與MF⊥MN矛盾.
∴不存在點(diǎn)N,使得過(guò)MN的平面與AC垂直,故(4)正確.
故選:C.
點(diǎn)評(píng) 本題考查了正四面體的結(jié)構(gòu)特征,結(jié)合圖形構(gòu)造平面是關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
ωx+φ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2π |
x | 2 | 5 | |||
y | 6 | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 若k=1,則|a-1|<|a-2| | B. | 若k=1,則|a-1|>|a-2| | C. | 若k=2,則|a-1|<|a-2| | D. | 若k=2,則|a-1|>|a-2| |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com