18.已知平面向量$\overrightarrow a,\overrightarrow b$滿足$\overrightarrow b•(\overrightarrow a+\overrightarrow b)=3$,且$|\overrightarrow a|=1,|\overrightarrow b|=2$,則向量$\overrightarrow a$與$\overrightarrow b$的夾角( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

分析 根據(jù)平面向量的數(shù)量積公式與夾角公式,求出cosθ與θ的值.

解答 解:設(shè)向量$\overrightarrow{a}$與$\overrightarrow$的夾角為θ,θ∈[0,π]
由$\overrightarrow$•($\overrightarrow{a}$+$\overrightarrow$)=3可得$\overrightarrow$•$\overrightarrow{a}$+${\overrightarrow}^{2}$=3,
代入數(shù)據(jù)可得2×1×cosθ+22=3,
解得cosθ=-$\frac{1}{2}$,
∴θ=$\frac{2π}{3}$.
故選:C.

點評 本題考查了數(shù)量積與兩個向量的夾角問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)過點P(2,1),且離心率為$\frac{\sqrt{3}}{2}$.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)O為坐標(biāo)原點,在橢圓短軸上有兩點M,N滿足$\overrightarrow{OM}$=$\overrightarrow{NO}$,直線PM、PN分別交橢圓于A,B.
(i)求證:直線AB過定點,并求出定點的坐標(biāo);
(ii)求△OAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知α為第二象限角.且sin2α=-$\frac{24}{25}$,則cosα-sinα的值為( 。
A.$\frac{7}{5}$B.-$\frac{7}{5}$C.$\frac{1}{5}$D.-$\frac{1}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=|2x-1|+|2x-a|.
(1)當(dāng)a=2時,求不等式f(x)<2的解集;
(2)當(dāng)x∈R時,f(x)≥3a+2恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)向量$\overrightarrow a=(sinx,\frac{{\sqrt{3}}}{2}(sinx-cosx))$,$\overrightarrow b=(cosx,sinx+cosx)$,x∈R,記函數(shù)$f(x)=\overrightarrow a•\overrightarrow b$.
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)在銳角△ABC中,角A,B,C的對邊分別為a,b,c.若$f(A)=\frac{1}{2}$,$a=\sqrt{2}$,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知四面體ABCD中,∠BAC=∠BAD=60°,∠CAD=90°,$AB=2\sqrt{2}$,AC=3,AD=4,則四面體ABCD的體積V=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.某校100位學(xué)生期中考試語文成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間是:[50,60)、[60,70)、[70,80)、[80,90)、[90,100].
分?jǐn)?shù)段[50,60)[60,70)[70,80)[80,90)
x::y1:12:13:44:5
(1)求圖中a的值;
(2)根據(jù)頻率分布直方圖,估計這100名學(xué)生語文成績的中位數(shù);
(3)若這100名學(xué)生的語文成績某些分?jǐn)?shù)段的人數(shù)x與數(shù)學(xué)成績相應(yīng)分?jǐn)?shù)段的人數(shù)y之比如下表所示,求數(shù)學(xué)成績在[50,90)之外的人數(shù).(分?jǐn)?shù)可以不為整數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=|x+2|+|x-1|.
(1)求不等式f(x)≥5的解集;
(2)若關(guān)于x的不等式f(x)≥m2-2m的解集為R,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知某四棱錐的三視圖如圖所示,俯視圖是邊長為4的正方形,正視圖和側(cè)視圖是邊長為4的等邊三角形,則該四棱錐的全面積為48.

查看答案和解析>>

同步練習(xí)冊答案