已知函數(shù),.
(Ⅰ)若在上為單調(diào)函數(shù),求m的取值范圍;
(Ⅱ)設(shè),若在上至少存在一個,使得成立,求的取值范圍.
(Ⅰ)(Ⅱ)
解析試題分析:(Ⅰ)f(x)-g(x)=mx-,
由于f(x)-g(x)在其定義域內(nèi)為單調(diào)函數(shù),則在上恒成立,
即在上恒成立,
故,
綜上,m的取值范圍是 …6分
(Ⅱ)構(gòu)造函數(shù)F(x)=f(x)-g(x)-h(x),
,
當由得,,
所以在上不存在一個,使得; …………10分
當m>0時,,
因為,所以在上恒成立,故F(x)在上單調(diào)遞增,,
故m的取值范圍是…………15分
另法:(3) 令
考點:利用函數(shù)導數(shù)判定單調(diào)性求函數(shù)最值
點評:若已知函數(shù)在某區(qū)間上是增函數(shù),則有在該區(qū)間上恒成立;若已知函數(shù)在某區(qū)間上是減函數(shù),則有在該區(qū)間上恒成立。第二問首先將不等式成立轉(zhuǎn)化為求函數(shù)最值,進而構(gòu)造新函數(shù),通過導數(shù)工具求其最值
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
若函數(shù)的定義域為,其中a、b為任
意正實數(shù),且a<b。
(1)當A=時,研究的單調(diào)性(不必證明);
(2)寫出的單調(diào)區(qū)間(不必證明),并求函數(shù)的最小值、最大值;
(3)若其中k是正整數(shù),對一切正整數(shù)k不等式都有解,求m的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù),曲線在點處的切線方程為.
(1)求函數(shù)的解析式;
(2)過點能作幾條直線與曲線相切?說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分14分)
已知函數(shù)f(x)=(x2+ax-2a-3)·e3-x (a∈R)
(1)討論f(x)的單調(diào)性;
(2)設(shè)g(x)=(a2+)ex(a>0),若存在x1,x2∈[0,4]使得|f(x1)-g(x2)|<1成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(12分)定義在上的函數(shù),,當時,.且對任意的有。
(1)證明:;
(2)證明:對任意的,恒有;
(3)證明:是上的增函數(shù);
(4)若,求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù),其圖象在點 處的切線方程為
(1)求的值;
(2)求函數(shù)的單調(diào)區(qū)間,并求出在區(qū)間[-2,4]上的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com