已知函數(shù)(a∈R,a為常數(shù)),
(Ⅰ)求函數(shù)f(x)的周期和單調(diào)遞增區(qū)間;
(Ⅱ)若函數(shù)f(x)在上的最小值為4,求a的值.
【答案】分析:(I)先利用二倍角公式和兩角差的正弦公式,將函數(shù)f(x)化為y=Asin(ωx+φ)型函數(shù),再利用三角函數(shù)周期公式計算其周期,利用正弦函數(shù)的單調(diào)區(qū)間,通過解不等式求得此函數(shù)的單調(diào)區(qū)間;
(II)先求內(nèi)層函數(shù)的值域,再利用正弦函數(shù)的圖象和性質(zhì),求函數(shù)f(x)的最大值,利用已知列方程即可解得a的值
解答:解:(Ⅰ)∵
=sin2x-(1+cos2x)+a
=2(sin2x-cos2x)-1+a
=

,得≤x≤
∴單調(diào)遞增區(qū)間為
(Ⅱ)∵≤x≤
∴-1≤
時,由f(x)min=-2+a-1=4
得a=7
點評:本題主要考查了三角變換公式在三角化簡和求值中的應用,y=Asin(ωx+φ)型函數(shù)的圖象和性質(zhì)應用,整體代入的思想方法,屬中檔題
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

如果f(x0)是函數(shù)f(x)的一個極值,稱點(x0,f(x0))是函數(shù)f(x)的一個極值點.已知函數(shù)f(x)=(ax-b)e
a
x
(x≠0且a≠0)
(1)若函數(shù)f(x)總存在有兩個極值點A,B,求a,b所滿足的關(guān)系;
(2)若函數(shù)f(x)有兩個極值點A,B,且存在a∈R,求A,B在不等式|x|<1表示的區(qū)域內(nèi)時實數(shù)b的范圍.
(3)若函數(shù)f(x)恰有一個駐點A,且存在a∈R,使A在不等式
|x|<1
|y|<e2
表示的區(qū)域內(nèi),證明:0≤b<1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1
2
x2-3x+(a-1)lnx,g(x)=ax,h(x)=f(x)-g(x)+3x,其中a∈R且a>1.
(I)求函數(shù)f(x)的導函數(shù)f′(x)的最小值;
(II)當a=3時,求函數(shù)h(x)的單調(diào)區(qū)間及極值;
(III)若對任意的x1,x2∈(0,+∞),x1≠x2,函數(shù)h(x)滿足
h(x1)-h(x2)
x1-x2
,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)g(x)=(a+1)x,h(x)=x2+lg|a+2|,f(x)=g(x)+h(x),其中a∈R且a≠-2.
(1)若f(x)為偶函數(shù),求a的值;
(2)命題p:函數(shù)f(x)在區(qū)間[(a+1)2,+∞)上是增函數(shù),命題q:函數(shù)g(x)是減函數(shù),如果p或q為真,p且q為假,求a的取值范圍.
(3)在(2)的條件下,比較f(2)與3-lg2的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1
2
x2-3x+(a-1)lnx,g(x)=ax,h(x)=f(x)-g(x)+3x,其中a∈R且a>1.
(I)求函數(shù)f(x)的導函數(shù)f′(x)的最小值;
(II)當a=3時,求函數(shù)h(x0的單調(diào)區(qū)間及極值;
(III)若對任意的x1,x2∈(0,+∞),x1≠x2,函數(shù)h(x)滿足
h(x1)-h(x2)
x1-x2
>-1
,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江西省百所重點高中高三(上)段考數(shù)學試卷(理科)(解析版) 題型:解答題

已知函數(shù)(a∈R且a≠0).
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ) 記函數(shù)y=F(x)的圖象為曲線C.設點A(x1,y1),B(x2,y2)是曲線C上的不同兩點,如果在曲線C上存在點M(x,y),使得:①;②曲線C在M處的切線平行于直線AB,則稱函數(shù)F(x)存在“中值相依切線”.
試問:函數(shù)f(x)是否存在“中值相依切線”,請說明理由.

查看答案和解析>>

同步練習冊答案