已知f′(x0)=2,則
lim
k→0
f(x0-3k)-f(x0+k)
2k
=
 
考點(diǎn):導(dǎo)數(shù)的運(yùn)算
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:根據(jù)導(dǎo)數(shù)的定義進(jìn)行轉(zhuǎn)化即可.
解答: 解:
lim
k→0
f(x0-3k)-f(x0+k)
2k
=-2
lim
k→0
f(x0-3k)-f(x0+k)
-4k
=-2f′(x0)=-4,
故答案為:-4
點(diǎn)評(píng):本題主要考查導(dǎo)數(shù)的計(jì)算,根據(jù)導(dǎo)數(shù)的定義將極限進(jìn)行轉(zhuǎn)化是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,內(nèi)角A、B、C所對邊的邊長分別是a、b、c,已知c=2、C=
π
2
,△ABC面積等于
3
,則a+b=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(1,2),
b
=(0,1),
c
=(-2,k),若(
a
+2
b
)⊥
c
,則k=( 。
A、
1
2
B、2
C、-
1
2
D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,3Sn=an-1(n∈N).
(1)求a1,a2;
(2)求證:數(shù)列{an}是等比數(shù)列;
(3)求an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=-4x4+lnx,則y′等于( 。
A、4x3+
1
x
B、-16x3+
1
x
C、16x3+ex
D、-4x3+
1
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)=
x-2,x>0
0,
 x=0
x2+1,x<0
,則f[f(-1)]的值為(  )
A、2B、1C、0D、-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x)對一切x,y∈R,有f(x+y)=f(x)+f(y),且當(dāng)x>0時(shí),f(x)<0,f(2)=-4.
(1)求f(0)的值,并判斷f(x)的奇偶性;
(2)證明:函數(shù)f(x)在R上是減函數(shù);
(3)解不等式:f(5x-7)+f(3-x)≤6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“2a>2b”是“l(fā)og2a>log2b”的(  )條件.
A、充分不必要
B、必要不充分
C、充要
D、既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知角α的終邊經(jīng)過點(diǎn)P(
4
5
,-
3
5
).
(1)求sin(α+
π
4
)的值;
(2)求tan2α的值.

查看答案和解析>>

同步練習(xí)冊答案