5.已知直線l1:y=ax-1,直線l2:y=x-3;若直線l1的傾斜角為$\frac{π}{4}$,則a=1,若l1⊥l2,則a=-1.

分析 (1)根據(jù)直線的傾斜角求出a的值,(2)根據(jù)直線的位置關(guān)系求出a的值即可.

解答 解:直線l1:y=ax-1,若直線l1的傾斜角為$\frac{π}{4}$,
則a=tan$\frac{π}{4}$=1,
直線l1:y=ax-1,斜率是a,
直線l2:y=x-3,斜率是1;
若l1⊥l2,則a•1=-1,解得:a=-1,
故答案為:1,-1.

點(diǎn)評(píng) 本題考查了直線的斜率的求法,考查直線的垂直關(guān)系,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.經(jīng)過(guò)雙曲線$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{20}$=1的左焦點(diǎn)和右頂點(diǎn),且面積最小的圓的標(biāo)準(zhǔn)方程為(x+1)2+y2=25.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.函數(shù)f(x)=($\sqrt{1+x}$+$\sqrt{1-x}$+2)($\sqrt{1-{x}^{2}}$+1)的值域是[$\sqrt{2}$+2,8].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知拋物線C:y2=4x的焦點(diǎn)為F,它的準(zhǔn)線與對(duì)稱軸的交點(diǎn)為H,過(guò)點(diǎn)H的直線與拋物線C交于A、B兩點(diǎn),過(guò)點(diǎn)A作直線AF與拋物線C交于另一點(diǎn)B1,過(guò)點(diǎn)A、B、B1的圓的圓心坐標(biāo)為(a,b),半徑為r,則下列各式成立的是(  )
A.a2=r2-$\frac{1}{4}$B.a=rC.a2=r2+$\frac{1}{4}$D.a2=r2+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.有6名選手參加演講比賽,觀眾甲猜測(cè):4號(hào)或5號(hào)選手得第一名;觀眾乙猜測(cè):3號(hào)選手不可能得第一名;觀眾丙猜測(cè):1,2,6號(hào)選手中的一位獲得第一名;觀眾丁猜測(cè):4,5,6號(hào)選手都不可能獲得第一名.比賽后發(fā)現(xiàn)沒(méi)有并列名次,且甲、乙、丙、丁中只有1人猜對(duì)比賽結(jié)果,此人是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知圓E:(x+$\sqrt{3}$)2+y2=16,點(diǎn)F($\sqrt{3}$,0),P是圓E上任意一點(diǎn),線段PF的垂直平分線和半徑PE相交于點(diǎn)Q.
(1)求動(dòng)點(diǎn)Q的軌跡Γ的方程;
(2)過(guò)點(diǎn)C(-2,0)作兩條互相垂直的直線l1,l2,若l1,l2分別與軌跡Γ相交于點(diǎn)A,B,直線AB與x軸交于點(diǎn)M,過(guò)點(diǎn)M作直線l交軌跡Γ于G,H兩點(diǎn),求△OGH面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.有下列說(shuō)法:
①在△ABC中,若$\overrightarrow{BC}$•$\overrightarrow{CA}$<0,則△ABC是鈍角三角形;
②在△ABC中$\overrightarrow{AB}$=$\overrightarrow{c}$,$\overrightarrow{BC}$=$\overrightarrow{a}$,$\overrightarrow{CA}$=$\overrightarrow$,若|$\overrightarrow{a}$|=|$\overrightarrow$-$\overrightarrow{c}$|,則△ABC是直角三角形;
③在△ABC中,若tan $\frac{A+B}{2}$=sin C,則sin2A+sin2B=1;
④在△ABC中,E,F(xiàn)分別是AC,AB的中點(diǎn),且3AB=2AC,若$\frac{BE}{CF}$<t恒成立,則t的最小值為$\frac{7}{8}$.
其中正確說(shuō)法的個(gè)數(shù)是( 。
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知向量$\overrightarrow a$,$\overrightarrow b$均為單位向量,它們的夾角為60°,則|2$\overrightarrow a$-3$\overrightarrow b}$|等于(  )
A.1B.$\sqrt{3}$C.$\sqrt{5}$D.$\sqrt{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知α∈[$\frac{π}{4}$,π],β∈[π,$\frac{3π}{2}$],sin2α=$\frac{\sqrt{5}}{5}$,sin(β-α)=$\frac{\sqrt{10}}{10}$.
(1)求cos2α的值;
(2)求α+β的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案