14.已知向量$\overrightarrow a$,$\overrightarrow b$均為單位向量,它們的夾角為60°,則|2$\overrightarrow a$-3$\overrightarrow b}$|等于( 。
A.1B.$\sqrt{3}$C.$\sqrt{5}$D.$\sqrt{7}$

分析 將所求平方展開,轉(zhuǎn)化為向量$\overrightarrow a$,$\overrightarrow b$的運算解答.

解答 解:因為向量$\overrightarrow a$,$\overrightarrow b$均為單位向量,它們的夾角為60°,所以$\overrightarrow{a}•\overrightarrow=cos60°=\frac{1}{2}$,
所以|2$\overrightarrow a$-3$\overrightarrow b}$|2=$4{\overrightarrow{a}}^{2}+9{\overrightarrow}^{2}-12\overrightarrow{a}•\overrightarrow$=4+9-6=7,
所以|2$\overrightarrow a$-3$\overrightarrow b}$|=$\sqrt{7}$;
故選D.

點評 本題考查了平面向量的運算;有數(shù)量積的公式運用.屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

15.雙曲線3x2-y2=9的實軸長是( 。
A.2$\sqrt{3}$B.2$\sqrt{2}$C.4$\sqrt{3}$D.4$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知直線l1:y=ax-1,直線l2:y=x-3;若直線l1的傾斜角為$\frac{π}{4}$,則a=1,若l1⊥l2,則a=-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.sin(-480°)=( 。
A.$\frac{{\sqrt{3}}}{2}$B.-$\frac{{\sqrt{3}}}{2}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知過點(1,1)的直線l與圓C:x2+y2-4y+2=0相切,則圓C的半徑為$\sqrt{2}$,直線l的方程為x-y=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知P,M,N在△ABC所在平面內(nèi),且|$\overrightarrow{PA}$|=|$\overrightarrow{PB}$|=|$\overrightarrow{PC}$|,$\overrightarrow{MA}$•$\overrightarrow{MB}$=$\overrightarrow{MB}$•$\overrightarrow{MC}$=$\overrightarrow{MC}$•$\overrightarrow{MA}$,且$\overrightarrow{NA}$+$\overrightarrow{NB}$+$\overrightarrow{NC}$=$\overrightarrow{0}$,則點P,M,N依次是△ABC的( 。
A.重心 垂心 內(nèi)心B.外心 垂心 重心C.重心 外心 內(nèi)心D.外心 重心 內(nèi)心

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知函數(shù)f(x)=Asin(ωx+φ)的部分圖象如圖,則f($\frac{7π}{4}$)=(  )
A.-$\sqrt{3}$B.-1C.$\sqrt{3}$D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.根據(jù)下列條件,求圓方程:
(1)過兩點A(1,2),B(5,6),且圓心在直線2x-y-5=0上的圓的標準方程;
(2)求與直線x+3y-8=0相切于點P(2,2),且截y軸所得弦長為2的圓的標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.運行如圖所示的程序框圖,則輸出的S的值為(  )
A.-10B.-7C.9D.12

查看答案和解析>>

同步練習冊答案