【題目】如圖所示,在三棱錐P-ABC中,平面PAB⊥平面ABC,△ABC是邊長(zhǎng)為的等邊三角形,,點(diǎn)O,M分別是AB,BC的中點(diǎn).
(1)證明:AC//平面POM;
(2)求點(diǎn)B到平面POM的距離.
【答案】(1)證明見解析;(2)
【解析】
(1)證明直線平行平面POM內(nèi)的直線,再利用線面平行判定定理證明;
(2)作BN⊥OM,垂足為N,先證明BN⊥平面POM,得到線段BN的長(zhǎng)即為點(diǎn)B到平面POM的距離,再?gòu)?/span>△BOM中求得BN的長(zhǎng).
(1)∵點(diǎn)O,M分別是AB,BC的中點(diǎn),∴OM//AC.
又∵OM平面POM,AC平面POM,
∴AC//平面POM.
(2)如圖所示,作BN⊥OM,垂足為N,
∵,O是AB的中點(diǎn),∴.
∵平面PAB⊥平面ABC,交線為AB,∴PO⊥平面ABC,∴PO⊥BN.
又,∴BN⊥平面POM.
∴線段BN的長(zhǎng)即為點(diǎn)B到平面POM的距離.
由△ABC是等邊三角形,可得△BOM也是等邊三角形.
∵,∴,.
故點(diǎn)B到平面POM的距離為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某精密儀器生產(chǎn)車間每天生產(chǎn)個(gè)零件,質(zhì)檢員小張每天都會(huì)隨機(jī)地從中抽取50個(gè)零件進(jìn)行檢查是否合格,若較多零件不合格,則需對(duì)其余所有零件進(jìn)行檢查.根據(jù)多年的生產(chǎn)數(shù)據(jù)和經(jīng)驗(yàn),這些零件的長(zhǎng)度服從正態(tài)分布(單位:微米),且相互獨(dú)立.若零件的長(zhǎng)度滿足,則認(rèn)為該零件是合格的,否則該零件不合格.
(1)假設(shè)某一天小張抽查出不合格的零件數(shù)為,求及的數(shù)學(xué)期望;
(2)小張某天恰好從50個(gè)零件中檢查出2個(gè)不合格的零件,若以此頻率作為當(dāng)天生產(chǎn)零件的不合格率.已知檢查一個(gè)零件的成本為10元,而每個(gè)不合格零件流入市場(chǎng)帶來的損失為260元.假設(shè)充分大,為了使損失盡量小,小張是否需要檢查其余所有零件,試說明理由.
附:若隨機(jī)變量服從正態(tài)分布,則.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】直線與拋物線相交于,兩點(diǎn),且,若,到軸距離的乘積為.
(1)求的方程;
(2)設(shè)點(diǎn)為拋物線的焦點(diǎn),當(dāng)面積最小時(shí),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我們稱n()元有序?qū)崝?shù)組(,,…,)為n維向量,為該向量的范數(shù).已知n維向量,其中,,2,…,n.記范數(shù)為奇數(shù)的n維向量的個(gè)數(shù)為,這個(gè)向量的范數(shù)之和為.
(1)求和的值;
(2)當(dāng)n為偶數(shù)時(shí),求,(用n表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,橢圓的長(zhǎng)軸長(zhǎng)為,點(diǎn)、、為橢圓上的三個(gè)點(diǎn),為橢圓的右端點(diǎn),過中心,且,.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)、是橢圓上位于直線同側(cè)的兩個(gè)動(dòng)點(diǎn)(異于、),且滿足,試討論直線與直線斜率之間的關(guān)系,并求證直線的斜率為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)
已知函數(shù)是奇函數(shù),的定義域?yàn)?/span>.當(dāng)時(shí), .(e為自然對(duì)數(shù)的底數(shù)).
(1)若函數(shù)在區(qū)間上存在極值點(diǎn),求實(shí)數(shù)的取值范圍;
(2)如果當(dāng)x≥1時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在斜三棱柱中,平面平面,,,,均為正三角形,E為AB的中點(diǎn).
(Ⅰ)證明:平面;
(Ⅱ)求斜三棱柱截去三棱錐后剩余部分的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知菱形ABCD中,∠BAD=60°,AC與BD相交于點(diǎn)O.將△ABD沿BD折起,使頂點(diǎn)A至點(diǎn)M,在折起的過程中,下列結(jié)論正確的是( )
A.BD⊥CM
B.存在一個(gè)位置,使△CDM為等邊三角形
C.DM與BC不可能垂直
D.直線DM與平面BCD所成的角的最大值為60°
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A,B關(guān)于坐標(biāo)原點(diǎn)O對(duì)稱,,以M為圓心的圓過A,B兩點(diǎn),且與直線相切,若存在定點(diǎn)P,使得當(dāng)A運(yùn)動(dòng)時(shí),為定值,則點(diǎn)P的坐標(biāo)為( )
A.B.C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com