設函數(shù)f(x)=
1
1-x
的定義域為M,函數(shù)g(x)=lg(1+x)的定義域為N,則( 。
A、M∩N=(-1,1]
B、M∩N=R
C、∁RM=[1,+∞)
D、∁RN=(-∞,-1)
考點:對數(shù)函數(shù)的定義域
專題:函數(shù)的性質(zhì)及應用
分析:求對數(shù)函數(shù)的定義域,可得M、N,再利用集合間的運算法則得出結(jié)論.
解答: 解:∵函數(shù)f(x)=
1
1-x
的定義域為M,函數(shù)g(x)=lg(1+x)的定義域為N,
∴M={x|1-x>0}={x|x<1},N={x|1+x>0}={x|x>-1},
∴∁RM=[1,+∞),
故選:C.
點評:本題主要考查求對數(shù)函數(shù)的定義域,集合間的運算,屬于基礎題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

給出下列命題:
(1)實數(shù)的共軛復數(shù)一定是實數(shù);
(2)滿足|z-i|+|z+i|=2的復數(shù)z在復平面上對應的點的軌跡是橢圓;
(3)若m∈Z,i2=-1,則im+im+1+im+2+im+3=0;
(4)0>-i.
其中正確命題的序號是( 。
A、(1)
B、(1)(3)
C、(2)(3)
D、(1)(4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

不等式組
(x+a)2+(y+b)2>1,a,b∈{1,-1}
x≥-1
y≤1
表示的平面區(qū)域的面積等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在復平面內(nèi),復數(shù)z=
3-i
1+i
(i為虛數(shù)單位)的共軛復數(shù)等于( 。
A、1+2iB、1-2i
C、1+3iD、-1-3i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果直線3x-
3
y+m=0與雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)恒有兩個公共點,則雙曲線C的離心率的取值范圍是( 。
A、(1,2)
B、(2,+∞)
C、(1,2]
D、[2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C的方程為
x2
a2
+
y2
b2
=1(a>b>0),雙曲線
x2
a2
-
y2
b2
=1的兩條漸近線為l1,l2,過橢圓C的右焦點F作直線l,使l⊥l1,又l與l2交于P點,設l與橢圓C的兩個交點由上至下依次為A,B.
(1)若l1與l2夾角為60°,雙曲線的焦距為4時,求橢圓C的方程及離心率;
(2)求
FA
AP
的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知直線l1:y=4x+m,(m<0)與拋物線C1:y=2ax2,(a>0)和圓C2x2+(y+1)2=17都相切,F(xiàn)是拋物線C1的焦點.
(Ⅰ)求m與a的值;
(Ⅱ)設A是C1上的一動點,以A為切點作拋物線C1的切線l,直線l交y軸于點B,以FA,F(xiàn)B為鄰邊作平行四邊形FAMB,證明:點M在一條定直線上;
(Ⅲ)在(Ⅱ)的條件下,記點M所在的定直線為l2,直線l2與y軸交點為N,連接MF交拋物線C1于P,Q兩點,求△NPQ的面積S的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算
(1)設f(x)=e|x|,求
4
-2
f(x)dx的值;
(2)求
C
2
3
+C
2
4
+C
2
5
+…
+C
2
30
的值(結(jié)果用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C的中心在原點,一個焦點為F(0,
2
)
,且長軸長與短軸長的比為
2
:1

(1)求橢圓C的方程;
(2)若橢圓C上在第一象限內(nèi)的一點P的橫坐標為1,過點P作傾斜角互補的兩條不同的直線PA,PB分別交橢圓C于另外兩點A,B.求證:直線AB的斜率為定值.

查看答案和解析>>

同步練習冊答案