函數(shù)f(x)=數(shù)學(xué)公式是以 ________為最小正周期的 ________(選填“奇”或“偶”)函數(shù).

4π    偶函數(shù)
分析:先利用二倍角公式對函數(shù)解析式進(jìn)行化簡整理,進(jìn)而利用余弦函數(shù)的性質(zhì)求得函數(shù)的最小正周期和奇偶性.
解答:f(x)====1-
∴y=cos的最小正周期T==4π,為偶函數(shù)
∴函數(shù)f(x)的最小正周期為4π,偶函數(shù)
故答案為:4π,偶函數(shù)
點(diǎn)評(píng):本題主要考查了三角函數(shù)的周期性及其求法,余弦函數(shù)的基本性質(zhì).考查了學(xué)生對三角函數(shù)基礎(chǔ)知識(shí)的整體把握.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
-x3+x2+bx+c,x<1
alnx,x≥1
的圖象過坐標(biāo)原點(diǎn)O,且在點(diǎn)(-1,f(-1))處的切線的斜率是-5.
(Ⅰ)求實(shí)數(shù)b,c的值;  
(Ⅱ)求f(x)在區(qū)間[-1,2]上的最大值;
(Ⅲ)對任意給定的正實(shí)數(shù)a,曲線y=f(x)上是否存在兩點(diǎn)P、Q,使得△POQ是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在y軸上?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)f(x)滿足:f(x+2)+f(x)=0,且函數(shù)f(x+1)為奇函數(shù),對于下列命題:
①函數(shù)f(x)是以T=2為周期的函數(shù);
②函數(shù)f(x)的圖象關(guān)于點(diǎn)(1,0)對稱;
③函數(shù)f(x)的圖象關(guān)于直線x=2對稱;
④函數(shù)f(x)的最大值為f(2);
⑤f(2011)=0.
其中正確結(jié)論的序號(hào)為( 。
A、①③⑤B、②③⑤C、②③④D、①④⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列幾個(gè)命題:
①若函數(shù)f(x)的定義域?yàn)镽,則g(x)=f(x)+f(-x)一定是偶函數(shù);
②若函數(shù)f(x)是定義域?yàn)镽的奇函數(shù),對于任意的x∈R都有f(x)+f(2-x)=0,則函數(shù)f(x)的圖象關(guān)于直線x=1對稱;
③已知x1,x2是函數(shù)f(x)定義域內(nèi)的兩個(gè)值,當(dāng)x1<x2時(shí),f(x1)>f(x2),則f(x)是減函數(shù);
④設(shè)函數(shù)y=
1-x
+
x+3
的最大值和最小值分別為M和m,則M=
2
m
;
⑤若f(x)是定義域?yàn)镽的奇函數(shù),且f(x+2)也為奇函數(shù),則f(x)是以4為周期的周期函數(shù).
其中正確的命題序號(hào)是
①④⑤
①④⑤
.(寫出所有正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)(x∈R)是以3為周期的周期函數(shù),且為奇函數(shù),又f(1)>1,f(2)=a,那么 a的取值范圍是
a<-1
a<-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)?sinx是以π為周期的奇函數(shù),則f(x)可以是( 。
A、sin2xB、cos2xC、sinxD、cosx

查看答案和解析>>

同步練習(xí)冊答案