已知直線過定點(diǎn),動點(diǎn)滿足,動點(diǎn)的軌跡為.
(Ⅰ)求的方程;
(Ⅱ)直線與交于兩點(diǎn),以為切點(diǎn)分別作的切線,兩切線交于點(diǎn).
①求證:;②若直線與交于兩點(diǎn),求四邊形面積的最大值.
(1) (2) 根據(jù)直線斜率互為負(fù)倒數(shù)來得到證明,當(dāng)且僅當(dāng)時(shí),四邊形面積的取到最小值。
【解析】
試題分析:(I)由題意知,設(shè)
化簡得 3分
(Ⅱ)①設(shè),,
由消去,得,顯然.
所以,
由,得,所以,
所以,以為切點(diǎn)的切線的斜率為,
所以,以為切點(diǎn)的切線方程為,又,
所以,以為切點(diǎn)的切線方程為……(1)
同理,以為切點(diǎn)的切線方程為……(2)
(2)-(1)并據(jù)得點(diǎn)的橫坐標(biāo),
代入(1)易得點(diǎn)的縱坐標(biāo),所以點(diǎn)的坐標(biāo)為
當(dāng)時(shí),顯然
當(dāng)時(shí),,從而 8分
②由已知,顯然直線的斜率不為0,由①知,所以,
則直線的方程為,
設(shè)設(shè),,
由消去,得,顯然,
所以,.
又
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013051508391309701610/SYS201305150839427376348941_DA.files/image033.png">,所以,
所以,,
當(dāng)且僅當(dāng)時(shí),四邊形面積的取到最小值 13分
考點(diǎn):直線與拋物線的位置關(guān)系
點(diǎn)評:解決的關(guān)鍵是借助于向量的模來表示得到軌跡方程,并聯(lián)立方程組來得到弦長公式,進(jìn)而得到面積的表示,屬于中檔題。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
PQ |
RS |
AB |
AF |
TB |
FT |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分14分)
平面直角坐標(biāo)系中,已知直線:,定點(diǎn),動點(diǎn)到直線的距離是到定點(diǎn)的距離的2倍.
(1)求動點(diǎn)的軌跡的方程;
(2)若為軌跡上的點(diǎn),以為圓心,長為半徑作圓,若過點(diǎn)可作圓的兩條切線,(,為切點(diǎn)),求四邊形面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com