A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{3}{4}$ | D. | $\frac{2}{3}$ |
分析 由f(x)在區(qū)間(-∞,-1]上是減函數(shù),可得f′(x)=ax+b≤0在區(qū)間(-∞,-1]上恒成立,由此列式得到a,b的關(guān)系,寫出所有數(shù)對(duì)(a,b),再由古典概型概率計(jì)算公式得答案.
解答 解:f(x)=$\frac{1}{2}$ax2+bx+1,則f′(x)=ax+b,
由題意得f′(x)=ax+b≤0在區(qū)間(-∞,-1]上恒成立,
則$\left\{\begin{array}{l}{a>0}\\{-a+b≤0}\end{array}\right.$,即b≤a.
由a∈{2,4},b∈{1,3},得數(shù)對(duì)(a,b)共有(2,1),(2,3),(4,1),(4,3)四對(duì).
滿足b≤a的有3對(duì).
∴概率P=$\frac{3}{4}$.
故選:C.
點(diǎn)評(píng) 本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查古典概型概率計(jì)算公式的求法,是基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|2kπ≤x≤2kπ+π,k∈z} | B. | $\left\{{x\left|{2kπ+\frac{π}{4}≤x≤2kπ+\frac{3π}{4},k∈z}\right.}\right\}$ | ||
C. | {x|kπ≤x≤kπ+π,k∈z} | D. | $\left\{{x\left|{kπ+\frac{π}{4}≤x≤kπ+\frac{3π}{4},k∈z}\right.}\right\}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=$\frac{1}{π}x-1$ | B. | y=$-\frac{1}{π}x+1$ | C. | y=$\frac{1}{π}x+1$ | D. | y=$-\frac{1}{π}x-1$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -3 | B. | -$\frac{1}{3}$ | C. | $\frac{1}{3}$ | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 4 | C. | 5 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{10}$ | B. | $\frac{3}{10}$ | C. | $\frac{7}{10}$ | D. | $\frac{9}{10}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com