【題目】在某校教師趣味投籃比賽中,比賽規(guī)則是:每場(chǎng)投6個(gè)球,至少投進(jìn)4個(gè)球且最后2個(gè)球都投進(jìn)者獲獎(jiǎng);否則不獲獎(jiǎng).已知教師甲投進(jìn)每個(gè)球的概率都是.

(Ⅰ)記教師甲在每場(chǎng)的6次投球中投進(jìn)球的個(gè)數(shù)為X,X的分布列及數(shù)學(xué)期望;

(Ⅱ)求教師甲在一場(chǎng)比賽中獲獎(jiǎng)的概率.

【答案】(Ⅰ)X的分布列

X

0

1

2

3

4

5

6

P








數(shù)學(xué)期望;(Ⅱ).

【解析】

試題(Ⅰ)先定出X的所有可能取值,易知本題是6個(gè)獨(dú)立重復(fù)試驗(yàn)中成功的次數(shù)的離散概率分布,即為二項(xiàng)分布.由二項(xiàng)分布公式可得到其分布列以及期望.(Ⅱ)根據(jù)比賽獲勝的規(guī)定,教師甲前四次投球中至少有兩次投中,后兩次必須投中,即可能的情況有1.前四次投中2次(六投四中);2.前四次投中3次(六投五中)3.前四次都投中(六投六中).其中第1種情況有種可能,第2中情況有(或)種可能.將上述三種情況的概率相加即得到教師甲獲勝的概率.

試題解析:(Ⅰ)X的所有可能取值為0,1,2,3,4,5,6.

依條件可知,

X的分布列為:

X

0

1

2

3

4

5

6

P








.

或因?yàn)?/span>,所以.

的數(shù)學(xué)期望為4. 7

(Ⅱ)設(shè)教師甲在一場(chǎng)比賽中獲獎(jiǎng)為事件A,則

答:教師甲在一場(chǎng)比賽中獲獎(jiǎng)的概率為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在發(fā)生公共衛(wèi)生事件期間,有專業(yè)機(jī)構(gòu)認(rèn)為該事件在一段時(shí)間內(nèi)沒(méi)有發(fā)生大規(guī)模群體感染的標(biāo)志為連續(xù)10天,每天新增疑似病例不超過(guò)7.過(guò)去10日,甲、乙、丙、丁四地新增疑似病例數(shù)據(jù)信息如下,則一定符合該標(biāo)志的是(

甲地:中位數(shù)為2,極差為5 乙地:總體平均數(shù)為2,眾數(shù)為2

丙地:總體平均數(shù)為1,總體方差大于0; 丁地:總體平均數(shù)為2,總體方差為3

A.甲地B.乙地C.丙地D.丁地

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某文體局為了解“跑團(tuán)”每月跑步的平均里程,收集并整理了2018年1月至2018年11月期間“跑團(tuán)”每月跑步的平均里程(單位:公里)的數(shù)據(jù),繪制了下面的折線圖.根據(jù)折線圖,下列結(jié)論正確的是( )

A. 月跑步平均里程的中位數(shù)為6月份對(duì)應(yīng)的里程數(shù)

B. 月跑步平均里程逐月增加

C. 月跑步平均里程高峰期大致在8、9月

D. 1月至5月的月跑步平均里程相對(duì)于6月至11月,波動(dòng)性更小,變化比較平穩(wěn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某同學(xué)利用暑假時(shí)間到一家商場(chǎng)勤工儉學(xué),該商場(chǎng)向他提供了三種付酬方案:

第一種,每天支付元,沒(méi)有獎(jiǎng)金;

第二種,每天的底薪元,另有獎(jiǎng)金.第一天獎(jiǎng)金元,以后每天支付的薪酬中獎(jiǎng)金比前一天的獎(jiǎng)金多元;

第三種,每天無(wú)底薪,只有獎(jiǎng)金.第一天獎(jiǎng)金元,以后每天支付的獎(jiǎng)金是前一天的獎(jiǎng)金的.

1)工作,記三種付費(fèi)方式薪酬總金額依次為、,寫(xiě)出、關(guān)于的表達(dá)式;

2)該學(xué)生在暑假期間共工作天,他會(huì)選擇哪種付酬方式?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),以x軸非負(fù)半軸為極軸,與直角坐標(biāo)系xOy取相同的長(zhǎng)度單位,建立極坐標(biāo)系.設(shè)曲線C的參數(shù)方程為 (θ為參數(shù)),直線l的極坐標(biāo)方程為ρcos=2.

(1)寫(xiě)出曲線C的普通方程和直線l的直角坐標(biāo)方程;

(2)求曲線C上的點(diǎn)到直線l的最大距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合A={x|2≤x≤8},B={x|1<x<6},C={x|x>a},U=R.

(1)求A∪B,(CUA)∩B;

(2)若A∩C≠,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,函數(shù).

1)當(dāng)時(shí),解不等式;

2)若關(guān)于的方程的解集中恰有一個(gè)元素,求的值;

3)設(shè),若內(nèi)是減函數(shù),對(duì)任意,函數(shù)在區(qū)間上的最大值與最小值的差不超過(guò),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)點(diǎn)的坐標(biāo)分別為,直線相交于點(diǎn),且它們的斜率之積是.

(1)求點(diǎn)的軌跡的方程;

(2)直線與曲線相交于兩點(diǎn),若是否存在實(shí)數(shù),使得的面積為?若存在,請(qǐng)求出的值;若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù).

(1)當(dāng)時(shí),求在區(qū)間上的最值;

(2)討論的單調(diào)性;

(3)當(dāng)時(shí),有恒成立,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案