【題目】某同學(xué)利用暑假時(shí)間到一家商場(chǎng)勤工儉學(xué),該商場(chǎng)向他提供了三種付酬方案:
第一種,每天支付元,沒有獎(jiǎng)金;
第二種,每天的底薪元,另有獎(jiǎng)金.第一天獎(jiǎng)金元,以后每天支付的薪酬中獎(jiǎng)金比前一天的獎(jiǎng)金多元;
第三種,每天無(wú)底薪,只有獎(jiǎng)金.第一天獎(jiǎng)金元,以后每天支付的獎(jiǎng)金是前一天的獎(jiǎng)金的倍.
(1)工作天,記三種付費(fèi)方式薪酬總金額依次為、、,寫出、、關(guān)于的表達(dá)式;
(2)該學(xué)生在暑假期間共工作天,他會(huì)選擇哪種付酬方式?
【答案】(1),,;(2)第三種,理由見解析.
【解析】
(1)三種支付方式每天支付的金額依次為數(shù)列、、,可知數(shù)列為常數(shù)數(shù)列,數(shù)列是以為首項(xiàng),以為公差的等差數(shù)列,數(shù)列是以為首項(xiàng),以為公比的等比數(shù)列,利用等差數(shù)列和等比數(shù)列求和公式可計(jì)算出、、關(guān)于的表達(dá)式;
(2)利用(1)中的結(jié)論,計(jì)算出、、的值,比較大小后可得出結(jié)論.
(1)設(shè)三種支付方式每天支付的金額依次為數(shù)列、、,
它們的前項(xiàng)和分別為、、,
第一種付酬方式每天所付金額組成數(shù)列為常數(shù)列,且,所以;
第二種付酬方式每天所付金額組成數(shù)列是以為首項(xiàng),以為公差的等差數(shù)列,
所以;
第三種付酬方式每天所付金額組成數(shù)列是以為首項(xiàng),以為公比的等比數(shù)列,
所以;
(2)由(1)知,當(dāng)時(shí),,,
,則.
因此,該學(xué)生在暑假期間共工作天,選第三種付酬方式較好.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知△ABC的面積為
(1)求sinBsinC;
(2)若6cosBcosC=1,a=3,求△ABC的周長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)列{an}滿足an+1+(﹣1)nan=2n﹣1,則{an}的前60項(xiàng)和為( )
A. 3690 B. 3660 C. 1845 D. 1830
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)是二次函數(shù),不等式的解集為,且在區(qū)間上的最小值是4.
(1)求的解析式;
(2)求在上的最大值、最小值的解析式;
(3)設(shè),若對(duì)任意均成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2017·全國(guó)卷Ⅲ文,18)某超市計(jì)劃按月訂購(gòu)一種酸奶,每天進(jìn)貨量相同,進(jìn)貨成本每瓶4元,售價(jià)每瓶6元,未售出的酸奶降價(jià)處理,以每瓶2元的價(jià)格當(dāng)天全部處理完.根據(jù)往年銷售經(jīng)驗(yàn),每天需求量與當(dāng)天最高氣溫(單位:℃)有關(guān).如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購(gòu)計(jì)劃,統(tǒng)計(jì)了前三年六月份各天的最高氣溫?cái)?shù)據(jù),得下面的頻數(shù)分布表:
最高氣溫 | [10,15) | [15,20) | [20,25) | [25,30) | [30,35) | [35,40) |
天數(shù) | 2 | 16 | 36 | 25 | 7 | 4 |
以最高氣溫位于各區(qū)間的頻率估計(jì)最高氣溫位于該區(qū)間的概率.
(1)估計(jì)六月份這種酸奶一天的需求量不超過300瓶的概率;
(2)設(shè)六月份一天銷售這種酸奶的利潤(rùn)為Y(單位:元).當(dāng)六月份這種酸奶一天的進(jìn)貨量為450瓶時(shí),寫出Y的所有可能值,并估計(jì)Y大于零的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】針對(duì)國(guó)家提出的延遲退休方案,某機(jī)構(gòu)進(jìn)行了網(wǎng)上調(diào)查,所有參與調(diào)查的人中,持“支持”、“保留”和“不支持”態(tài)度的人數(shù)如下表所示:
支持 | 保留 | 不支持 | |
歲以下 | |||
歲以上(含歲) |
(1)在所有參與調(diào)查的人中,用分層抽樣的方法抽取個(gè)人,已知從持“不支持”態(tài)度的人中抽取了人,求的值;
(2)在持“不支持”態(tài)度的人中,用分層抽樣的方法抽取人看成一個(gè)總體,從這人中任意選取人,求歲以下人數(shù)的分布列和期望;
(3)在接受調(diào)查的人中,有人給這項(xiàng)活動(dòng)打出的分?jǐn)?shù)如下: , , , , , , , , , ,把這個(gè)人打出的分?jǐn)?shù)看作一個(gè)總體,從中任取一個(gè)數(shù),求該數(shù)與總體平均數(shù)之差的絕對(duì)值超過概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在某校教師趣味投籃比賽中,比賽規(guī)則是:每場(chǎng)投6個(gè)球,至少投進(jìn)4個(gè)球且最后2個(gè)球都投進(jìn)者獲獎(jiǎng);否則不獲獎(jiǎng).已知教師甲投進(jìn)每個(gè)球的概率都是.
(Ⅰ)記教師甲在每場(chǎng)的6次投球中投進(jìn)球的個(gè)數(shù)為X,求X的分布列及數(shù)學(xué)期望;
(Ⅱ)求教師甲在一場(chǎng)比賽中獲獎(jiǎng)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若拋物線的焦點(diǎn)是,準(zhǔn)線是,點(diǎn)是拋物線上一點(diǎn),則經(jīng)過點(diǎn)、且與相切的圓共( )
A. 0個(gè) B. 1個(gè) C. 2個(gè) D. 4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知?jiǎng)訄A經(jīng)過定點(diǎn),且與直線相切,設(shè)動(dòng)圓圓心的軌跡為曲線.
(1)求曲線的方程;
(2)設(shè)過點(diǎn)的直線,分別與曲線交于,兩點(diǎn),直線,的斜率存在,且傾斜角互補(bǔ),證明:直線的斜率為定值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com