已知b>-1,c>0,函數(shù)f(x)=x+b的圖象與函數(shù)g(x)=x2+bx+c的圖象相切.
(Ⅰ)求b與c的關(guān)系式(用c表示b);
(Ⅱ)設(shè)函數(shù)F(x)=f(x)g(x)在(-∞,+∞)內(nèi)有極值點,求c的取值范圍.
【答案】分析:(1)注意把握題目中的信息,f(x)和g(x)在同一點處具有相同的切線斜率.即f′(x)=g′(x
(2)由構(gòu)造的新函數(shù)F(x)在R上有極值點,得到二次函數(shù)F′(x)有兩個零點,再將上題的結(jié)論代入可解.
解答:解:(Ⅰ)依題意,令f'(x)=g'(x),得2x+b=1,
.由于,得(b+1)2=4c.
,∴
(Ⅱ)F(x)=f(x)g(x)=x3+2bx2+(b2+c)x+bc.
F′(x)=3x2+4bx+b2+c.
令F'(x)=0,即3x2+4bx+b2+c=0.
則△=16b2-12(b2+c)=4(b2-3c).
若△=0,則F'(x)=0有一個實根x,且F'(x)的變化如下:

于是x=x不是函數(shù)F(x)的極值點.若△>0,
則F′(x)=0有兩個不相等的實根x1,x2(x1<x2)且F′(x)的變化如下:

由此,x=x1是函數(shù)F(x)的極大值點,x=x2是函數(shù)F(x)的極小值點.
綜上所述,當(dāng)且僅當(dāng)△=0時,函數(shù)F(x)在(-∞,+∞)上有極值點.

,∴
解之得0<c<7-4或c>7+4
故所求c的取值范圍是(0,7-4)∪(7+4,+∞).
點評:本題考查導(dǎo)數(shù)、切線、極值等知識及綜合運(yùn)用數(shù)學(xué)知識解決問題的能力.其中三次多項式函數(shù)也是高考中對導(dǎo)數(shù)考查的常見載體.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知b>-1,c>0,函數(shù)f(x)=x+b的圖象與函數(shù)g(x)=x2+bx+c的圖象相切.
(Ⅰ)求b與c的關(guān)系式(用c表示b);
(Ⅱ)設(shè)函數(shù)F(x)=f(x)g(x)在(-∞,+∞)內(nèi)有極值點,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知b>-1,c>0,函數(shù)f(x)=x+b的圖象與函數(shù)g(x)=x2+bx+c的圖象相切.
(Ⅰ)求b與c的關(guān)系式(用c表示b);
(Ⅱ)設(shè)函數(shù)F(x)=f(x)g(x),
(。┊(dāng)c=4時,在函數(shù)F(x)的圖象上是否存在點M(x0,y0),使得F(x)在點M的切線斜率為
b3
,若存在,求出點M的坐標(biāo);若不存在,說明理由.
(ⅱ)若函數(shù)F(x)在(-∞,+∞)內(nèi)有極值點,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知b>-1,c>0,函數(shù)f(x)=x+b的圖象與函數(shù)g(x)=x2+bx+c的圖象相切.
(1)設(shè)b=φ(c),求φ(c);
(2)設(shè)D(x)=
g(x)f(x)
(其中x>-b)在[-1,+∞)上是增函數(shù),求c的最小值;
(3)是否存在常數(shù)c,使得函數(shù)H(x)=f(x)g(x)在(-∞,+∞)內(nèi)有極值點?若存在,求出c的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知b>-1,c>0,函數(shù)f(x)=x+b的圖象與函數(shù)g(x)=x2+bx+c的圖象相切.
(1)設(shè)b=?(c),求?(c);
(2)是否存在常數(shù)c,使得函數(shù)H(x)=f(x)g(x)在(-∞,+∞)內(nèi)有極值點.若存在,求出c的取值范圍;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案