13.已知復(fù)數(shù)z=($\frac{1+i}{\sqrt{2}}$)2(其中i為虛數(shù)單位),則$\overline{z}$=(  )
A.1B.-iC.-1D.i

分析 利用復(fù)數(shù)的運(yùn)算法則、共軛復(fù)數(shù)的定義即可得出.

解答 解:z=($\frac{1+i}{\sqrt{2}}$)2=$\frac{2i}{2}$=i,則$\overline{z}$=-i.
故選:B.

點(diǎn)評 本題考查了復(fù)數(shù)的運(yùn)算法則、共軛復(fù)數(shù)的定義,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知f(x)=|2x+3|-|2x-1|.
(Ⅰ)求不等式f(x)<2的解集;
(Ⅱ)若存在x∈R,使得f(x)>|3a-2|成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知集合A={x|y=lg(x+1)},B={-2,-1,0,1},則(∁RA)∩B=( 。
A.{-2,-1}B.{-2}C.{-1,0,1}D.{0,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在平面直角坐標(biāo)系xOy中,以(-2,0)為圓心且與直線(3m+1)x+(1-2m)y-5=0(m∈R)相切的所有圓中,面積最大的圓的標(biāo)準(zhǔn)方程是( 。
A.(x+2)2+y2=16B.(x+2)2+y2=20C.(x+2)2+y2=25D.(x+2)2+y2=36

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,在平面直角坐標(biāo)中,過F(1,0)的直線FM與y軸交于點(diǎn)M,直線MN與直線FM垂直,且與x軸交于點(diǎn)N,T是點(diǎn)N關(guān)于直線FM的對稱點(diǎn).
(1)點(diǎn)T的軌跡為曲線C,求曲線C的方程;
(2)橢圓E的中心在坐標(biāo)原點(diǎn),F(xiàn)為其右焦點(diǎn),且離心率為$\frac{1}{2}$,過點(diǎn)F的直線l與曲線C交于A、B兩點(diǎn),與橢圓交于P、Q兩點(diǎn),請問:是否存在直線使A、F、Q是線段PB的四等分點(diǎn)?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x-y+6≥0}\\{x+y≥0}\\{x≤3}\end{array}\right.$若目標(biāo)函數(shù)Z=ax+y的最大值為3a+9,最小值為3a-3,則實(shí)數(shù)a的取值范圍是(  )
A.{a|-1≤a≤1}B.{a|a≤-1}C.{a|a≤-1或a≥1}D.{a|a≥1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知向量$\overrightarrow{OA}=({3,1}),\overrightarrow{OB}=({-1,3})$,$\overrightarrow{OC}=m\overrightarrow{OA}-n\overrightarrow{OB}({m>0,n>0})$,若m+n=1,則$|{\overrightarrow{OC}}$|的最小值為( 。
A.$\frac{{\sqrt{5}}}{2}$B.$\frac{{\sqrt{10}}}{2}$C.$\sqrt{5}$D.$\sqrt{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知等比數(shù)列{an}滿足a1=$\frac{1}{2},{a_2}{a_8}=2{a_5}$+3,則a9=( 。
A.$-\frac{1}{2}$B.$\frac{9}{8}$C.648D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.閱讀如圖所示的程序框圖,運(yùn)行相應(yīng)的程序,若輸入m=168,n=72,則輸出m的值為( 。
A.72B.24C.12D.6

查看答案和解析>>

同步練習(xí)冊答案